aboutsummaryrefslogtreecommitdiff
path: root/hct/Cam16.java
diff options
context:
space:
mode:
Diffstat (limited to 'hct/Cam16.java')
-rw-r--r--hct/Cam16.java439
1 files changed, 439 insertions, 0 deletions
diff --git a/hct/Cam16.java b/hct/Cam16.java
new file mode 100644
index 0000000..36d4895
--- /dev/null
+++ b/hct/Cam16.java
@@ -0,0 +1,439 @@
+/*
+ * Copyright 2021 Google LLC
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package com.google.ux.material.libmonet.hct;
+
+import static java.lang.Math.max;
+
+import com.google.ux.material.libmonet.utils.ColorUtils;
+
+/**
+ * CAM16, a color appearance model. Colors are not just defined by their hex code, but rather, a hex
+ * code and viewing conditions.
+ *
+ * <p>CAM16 instances also have coordinates in the CAM16-UCS space, called J*, a*, b*, or jstar,
+ * astar, bstar in code. CAM16-UCS is included in the CAM16 specification, and should be used when
+ * measuring distances between colors.
+ *
+ * <p>In traditional color spaces, a color can be identified solely by the observer's measurement of
+ * the color. Color appearance models such as CAM16 also use information about the environment where
+ * the color was observed, known as the viewing conditions.
+ *
+ * <p>For example, white under the traditional assumption of a midday sun white point is accurately
+ * measured as a slightly chromatic blue by CAM16. (roughly, hue 203, chroma 3, lightness 100)
+ */
+public final class Cam16 {
+ // Transforms XYZ color space coordinates to 'cone'/'RGB' responses in CAM16.
+ static final double[][] XYZ_TO_CAM16RGB = {
+ {0.401288, 0.650173, -0.051461},
+ {-0.250268, 1.204414, 0.045854},
+ {-0.002079, 0.048952, 0.953127}
+ };
+
+ // Transforms 'cone'/'RGB' responses in CAM16 to XYZ color space coordinates.
+ static final double[][] CAM16RGB_TO_XYZ = {
+ {1.8620678, -1.0112547, 0.14918678},
+ {0.38752654, 0.62144744, -0.00897398},
+ {-0.01584150, -0.03412294, 1.0499644}
+ };
+
+ // CAM16 color dimensions, see getters for documentation.
+ private final double hue;
+ private final double chroma;
+ private final double j;
+ private final double q;
+ private final double m;
+ private final double s;
+
+ // Coordinates in UCS space. Used to determine color distance, like delta E equations in L*a*b*.
+ private final double jstar;
+ private final double astar;
+ private final double bstar;
+
+ // Avoid allocations during conversion by pre-allocating an array.
+ private final double[] tempArray = new double[] {0.0, 0.0, 0.0};
+
+ /**
+ * CAM16 instances also have coordinates in the CAM16-UCS space, called J*, a*, b*, or jstar,
+ * astar, bstar in code. CAM16-UCS is included in the CAM16 specification, and is used to measure
+ * distances between colors.
+ */
+ double distance(Cam16 other) {
+ double dJ = getJstar() - other.getJstar();
+ double dA = getAstar() - other.getAstar();
+ double dB = getBstar() - other.getBstar();
+ double dEPrime = Math.sqrt(dJ * dJ + dA * dA + dB * dB);
+ double dE = 1.41 * Math.pow(dEPrime, 0.63);
+ return dE;
+ }
+
+ /** Hue in CAM16 */
+ public double getHue() {
+ return hue;
+ }
+
+ /** Chroma in CAM16 */
+ public double getChroma() {
+ return chroma;
+ }
+
+ /** Lightness in CAM16 */
+ public double getJ() {
+ return j;
+ }
+
+ /**
+ * Brightness in CAM16.
+ *
+ * <p>Prefer lightness, brightness is an absolute quantity. For example, a sheet of white paper is
+ * much brighter viewed in sunlight than in indoor light, but it is the lightest object under any
+ * lighting.
+ */
+ public double getQ() {
+ return q;
+ }
+
+ /**
+ * Colorfulness in CAM16.
+ *
+ * <p>Prefer chroma, colorfulness is an absolute quantity. For example, a yellow toy car is much
+ * more colorful outside than inside, but it has the same chroma in both environments.
+ */
+ public double getM() {
+ return m;
+ }
+
+ /**
+ * Saturation in CAM16.
+ *
+ * <p>Colorfulness in proportion to brightness. Prefer chroma, saturation measures colorfulness
+ * relative to the color's own brightness, where chroma is colorfulness relative to white.
+ */
+ public double getS() {
+ return s;
+ }
+
+ /** Lightness coordinate in CAM16-UCS */
+ public double getJstar() {
+ return jstar;
+ }
+
+ /** a* coordinate in CAM16-UCS */
+ public double getAstar() {
+ return astar;
+ }
+
+ /** b* coordinate in CAM16-UCS */
+ public double getBstar() {
+ return bstar;
+ }
+
+ /**
+ * All of the CAM16 dimensions can be calculated from 3 of the dimensions, in the following
+ * combinations: - {j or q} and {c, m, or s} and hue - jstar, astar, bstar Prefer using a static
+ * method that constructs from 3 of those dimensions. This constructor is intended for those
+ * methods to use to return all possible dimensions.
+ *
+ * @param hue for example, red, orange, yellow, green, etc.
+ * @param chroma informally, colorfulness / color intensity. like saturation in HSL, except
+ * perceptually accurate.
+ * @param j lightness
+ * @param q brightness; ratio of lightness to white point's lightness
+ * @param m colorfulness
+ * @param s saturation; ratio of chroma to white point's chroma
+ * @param jstar CAM16-UCS J coordinate
+ * @param astar CAM16-UCS a coordinate
+ * @param bstar CAM16-UCS b coordinate
+ */
+ private Cam16(
+ double hue,
+ double chroma,
+ double j,
+ double q,
+ double m,
+ double s,
+ double jstar,
+ double astar,
+ double bstar) {
+ this.hue = hue;
+ this.chroma = chroma;
+ this.j = j;
+ this.q = q;
+ this.m = m;
+ this.s = s;
+ this.jstar = jstar;
+ this.astar = astar;
+ this.bstar = bstar;
+ }
+
+ /**
+ * Create a CAM16 color from a color, assuming the color was viewed in default viewing conditions.
+ *
+ * @param argb ARGB representation of a color.
+ */
+ public static Cam16 fromInt(int argb) {
+ return fromIntInViewingConditions(argb, ViewingConditions.DEFAULT);
+ }
+
+ /**
+ * Create a CAM16 color from a color in defined viewing conditions.
+ *
+ * @param argb ARGB representation of a color.
+ * @param viewingConditions Information about the environment where the color was observed.
+ */
+ // The RGB => XYZ conversion matrix elements are derived scientific constants. While the values
+ // may differ at runtime due to floating point imprecision, keeping the values the same, and
+ // accurate, across implementations takes precedence.
+ @SuppressWarnings("FloatingPointLiteralPrecision")
+ static Cam16 fromIntInViewingConditions(int argb, ViewingConditions viewingConditions) {
+ // Transform ARGB int to XYZ
+ int red = (argb & 0x00ff0000) >> 16;
+ int green = (argb & 0x0000ff00) >> 8;
+ int blue = (argb & 0x000000ff);
+ double redL = ColorUtils.linearized(red);
+ double greenL = ColorUtils.linearized(green);
+ double blueL = ColorUtils.linearized(blue);
+ double x = 0.41233895 * redL + 0.35762064 * greenL + 0.18051042 * blueL;
+ double y = 0.2126 * redL + 0.7152 * greenL + 0.0722 * blueL;
+ double z = 0.01932141 * redL + 0.11916382 * greenL + 0.95034478 * blueL;
+
+ return fromXyzInViewingConditions(x, y, z, viewingConditions);
+ }
+
+ static Cam16 fromXyzInViewingConditions(
+ double x, double y, double z, ViewingConditions viewingConditions) {
+ // Transform XYZ to 'cone'/'rgb' responses
+ double[][] matrix = XYZ_TO_CAM16RGB;
+ double rT = (x * matrix[0][0]) + (y * matrix[0][1]) + (z * matrix[0][2]);
+ double gT = (x * matrix[1][0]) + (y * matrix[1][1]) + (z * matrix[1][2]);
+ double bT = (x * matrix[2][0]) + (y * matrix[2][1]) + (z * matrix[2][2]);
+
+ // Discount illuminant
+ double rD = viewingConditions.getRgbD()[0] * rT;
+ double gD = viewingConditions.getRgbD()[1] * gT;
+ double bD = viewingConditions.getRgbD()[2] * bT;
+
+ // Chromatic adaptation
+ double rAF = Math.pow(viewingConditions.getFl() * Math.abs(rD) / 100.0, 0.42);
+ double gAF = Math.pow(viewingConditions.getFl() * Math.abs(gD) / 100.0, 0.42);
+ double bAF = Math.pow(viewingConditions.getFl() * Math.abs(bD) / 100.0, 0.42);
+ double rA = Math.signum(rD) * 400.0 * rAF / (rAF + 27.13);
+ double gA = Math.signum(gD) * 400.0 * gAF / (gAF + 27.13);
+ double bA = Math.signum(bD) * 400.0 * bAF / (bAF + 27.13);
+
+ // redness-greenness
+ double a = (11.0 * rA + -12.0 * gA + bA) / 11.0;
+ // yellowness-blueness
+ double b = (rA + gA - 2.0 * bA) / 9.0;
+
+ // auxiliary components
+ double u = (20.0 * rA + 20.0 * gA + 21.0 * bA) / 20.0;
+ double p2 = (40.0 * rA + 20.0 * gA + bA) / 20.0;
+
+ // hue
+ double atan2 = Math.atan2(b, a);
+ double atanDegrees = Math.toDegrees(atan2);
+ double hue =
+ atanDegrees < 0
+ ? atanDegrees + 360.0
+ : atanDegrees >= 360 ? atanDegrees - 360.0 : atanDegrees;
+ double hueRadians = Math.toRadians(hue);
+
+ // achromatic response to color
+ double ac = p2 * viewingConditions.getNbb();
+
+ // CAM16 lightness and brightness
+ double j =
+ 100.0
+ * Math.pow(
+ ac / viewingConditions.getAw(),
+ viewingConditions.getC() * viewingConditions.getZ());
+ double q =
+ 4.0
+ / viewingConditions.getC()
+ * Math.sqrt(j / 100.0)
+ * (viewingConditions.getAw() + 4.0)
+ * viewingConditions.getFlRoot();
+
+ // CAM16 chroma, colorfulness, and saturation.
+ double huePrime = (hue < 20.14) ? hue + 360 : hue;
+ double eHue = 0.25 * (Math.cos(Math.toRadians(huePrime) + 2.0) + 3.8);
+ double p1 = 50000.0 / 13.0 * eHue * viewingConditions.getNc() * viewingConditions.getNcb();
+ double t = p1 * Math.hypot(a, b) / (u + 0.305);
+ double alpha =
+ Math.pow(1.64 - Math.pow(0.29, viewingConditions.getN()), 0.73) * Math.pow(t, 0.9);
+ // CAM16 chroma, colorfulness, saturation
+ double c = alpha * Math.sqrt(j / 100.0);
+ double m = c * viewingConditions.getFlRoot();
+ double s =
+ 50.0 * Math.sqrt((alpha * viewingConditions.getC()) / (viewingConditions.getAw() + 4.0));
+
+ // CAM16-UCS components
+ double jstar = (1.0 + 100.0 * 0.007) * j / (1.0 + 0.007 * j);
+ double mstar = 1.0 / 0.0228 * Math.log1p(0.0228 * m);
+ double astar = mstar * Math.cos(hueRadians);
+ double bstar = mstar * Math.sin(hueRadians);
+
+ return new Cam16(hue, c, j, q, m, s, jstar, astar, bstar);
+ }
+
+ /**
+ * @param j CAM16 lightness
+ * @param c CAM16 chroma
+ * @param h CAM16 hue
+ */
+ static Cam16 fromJch(double j, double c, double h) {
+ return fromJchInViewingConditions(j, c, h, ViewingConditions.DEFAULT);
+ }
+
+ /**
+ * @param j CAM16 lightness
+ * @param c CAM16 chroma
+ * @param h CAM16 hue
+ * @param viewingConditions Information about the environment where the color was observed.
+ */
+ private static Cam16 fromJchInViewingConditions(
+ double j, double c, double h, ViewingConditions viewingConditions) {
+ double q =
+ 4.0
+ / viewingConditions.getC()
+ * Math.sqrt(j / 100.0)
+ * (viewingConditions.getAw() + 4.0)
+ * viewingConditions.getFlRoot();
+ double m = c * viewingConditions.getFlRoot();
+ double alpha = c / Math.sqrt(j / 100.0);
+ double s =
+ 50.0 * Math.sqrt((alpha * viewingConditions.getC()) / (viewingConditions.getAw() + 4.0));
+
+ double hueRadians = Math.toRadians(h);
+ double jstar = (1.0 + 100.0 * 0.007) * j / (1.0 + 0.007 * j);
+ double mstar = 1.0 / 0.0228 * Math.log1p(0.0228 * m);
+ double astar = mstar * Math.cos(hueRadians);
+ double bstar = mstar * Math.sin(hueRadians);
+ return new Cam16(h, c, j, q, m, s, jstar, astar, bstar);
+ }
+
+ /**
+ * Create a CAM16 color from CAM16-UCS coordinates.
+ *
+ * @param jstar CAM16-UCS lightness.
+ * @param astar CAM16-UCS a dimension. Like a* in L*a*b*, it is a Cartesian coordinate on the Y
+ * axis.
+ * @param bstar CAM16-UCS b dimension. Like a* in L*a*b*, it is a Cartesian coordinate on the X
+ * axis.
+ */
+ public static Cam16 fromUcs(double jstar, double astar, double bstar) {
+
+ return fromUcsInViewingConditions(jstar, astar, bstar, ViewingConditions.DEFAULT);
+ }
+
+ /**
+ * Create a CAM16 color from CAM16-UCS coordinates in defined viewing conditions.
+ *
+ * @param jstar CAM16-UCS lightness.
+ * @param astar CAM16-UCS a dimension. Like a* in L*a*b*, it is a Cartesian coordinate on the Y
+ * axis.
+ * @param bstar CAM16-UCS b dimension. Like a* in L*a*b*, it is a Cartesian coordinate on the X
+ * axis.
+ * @param viewingConditions Information about the environment where the color was observed.
+ */
+ public static Cam16 fromUcsInViewingConditions(
+ double jstar, double astar, double bstar, ViewingConditions viewingConditions) {
+
+ double m = Math.hypot(astar, bstar);
+ double m2 = Math.expm1(m * 0.0228) / 0.0228;
+ double c = m2 / viewingConditions.getFlRoot();
+ double h = Math.atan2(bstar, astar) * (180.0 / Math.PI);
+ if (h < 0.0) {
+ h += 360.0;
+ }
+ double j = jstar / (1. - (jstar - 100.) * 0.007);
+ return fromJchInViewingConditions(j, c, h, viewingConditions);
+ }
+
+ /**
+ * ARGB representation of the color. Assumes the color was viewed in default viewing conditions,
+ * which are near-identical to the default viewing conditions for sRGB.
+ */
+ public int toInt() {
+ return viewed(ViewingConditions.DEFAULT);
+ }
+
+ /**
+ * ARGB representation of the color, in defined viewing conditions.
+ *
+ * @param viewingConditions Information about the environment where the color will be viewed.
+ * @return ARGB representation of color
+ */
+ int viewed(ViewingConditions viewingConditions) {
+ double[] xyz = xyzInViewingConditions(viewingConditions, tempArray);
+ return ColorUtils.argbFromXyz(xyz[0], xyz[1], xyz[2]);
+ }
+
+ double[] xyzInViewingConditions(ViewingConditions viewingConditions, double[] returnArray) {
+ double alpha =
+ (getChroma() == 0.0 || getJ() == 0.0) ? 0.0 : getChroma() / Math.sqrt(getJ() / 100.0);
+
+ double t =
+ Math.pow(
+ alpha / Math.pow(1.64 - Math.pow(0.29, viewingConditions.getN()), 0.73), 1.0 / 0.9);
+ double hRad = Math.toRadians(getHue());
+
+ double eHue = 0.25 * (Math.cos(hRad + 2.0) + 3.8);
+ double ac =
+ viewingConditions.getAw()
+ * Math.pow(getJ() / 100.0, 1.0 / viewingConditions.getC() / viewingConditions.getZ());
+ double p1 = eHue * (50000.0 / 13.0) * viewingConditions.getNc() * viewingConditions.getNcb();
+ double p2 = (ac / viewingConditions.getNbb());
+
+ double hSin = Math.sin(hRad);
+ double hCos = Math.cos(hRad);
+
+ double gamma = 23.0 * (p2 + 0.305) * t / (23.0 * p1 + 11.0 * t * hCos + 108.0 * t * hSin);
+ double a = gamma * hCos;
+ double b = gamma * hSin;
+ double rA = (460.0 * p2 + 451.0 * a + 288.0 * b) / 1403.0;
+ double gA = (460.0 * p2 - 891.0 * a - 261.0 * b) / 1403.0;
+ double bA = (460.0 * p2 - 220.0 * a - 6300.0 * b) / 1403.0;
+
+ double rCBase = max(0, (27.13 * Math.abs(rA)) / (400.0 - Math.abs(rA)));
+ double rC =
+ Math.signum(rA) * (100.0 / viewingConditions.getFl()) * Math.pow(rCBase, 1.0 / 0.42);
+ double gCBase = max(0, (27.13 * Math.abs(gA)) / (400.0 - Math.abs(gA)));
+ double gC =
+ Math.signum(gA) * (100.0 / viewingConditions.getFl()) * Math.pow(gCBase, 1.0 / 0.42);
+ double bCBase = max(0, (27.13 * Math.abs(bA)) / (400.0 - Math.abs(bA)));
+ double bC =
+ Math.signum(bA) * (100.0 / viewingConditions.getFl()) * Math.pow(bCBase, 1.0 / 0.42);
+ double rF = rC / viewingConditions.getRgbD()[0];
+ double gF = gC / viewingConditions.getRgbD()[1];
+ double bF = bC / viewingConditions.getRgbD()[2];
+
+ double[][] matrix = CAM16RGB_TO_XYZ;
+ double x = (rF * matrix[0][0]) + (gF * matrix[0][1]) + (bF * matrix[0][2]);
+ double y = (rF * matrix[1][0]) + (gF * matrix[1][1]) + (bF * matrix[1][2]);
+ double z = (rF * matrix[2][0]) + (gF * matrix[2][1]) + (bF * matrix[2][2]);
+
+ if (returnArray != null) {
+ returnArray[0] = x;
+ returnArray[1] = y;
+ returnArray[2] = z;
+ return returnArray;
+ } else {
+ return new double[] {x, y, z};
+ }
+ }
+}