aboutsummaryrefslogtreecommitdiff
path: root/Lib/fontTools/pens/cu2quPen.py
blob: 5730b325cf056f2e6633f7e6294853af21b1182e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import operator
from fontTools.cu2qu import curve_to_quadratic, curves_to_quadratic
from fontTools.pens.basePen import decomposeSuperBezierSegment
from fontTools.pens.filterPen import FilterPen
from fontTools.pens.reverseContourPen import ReverseContourPen
from fontTools.pens.pointPen import BasePointToSegmentPen
from fontTools.pens.pointPen import ReverseContourPointPen


class Cu2QuPen(FilterPen):
    """A filter pen to convert cubic bezier curves to quadratic b-splines
    using the FontTools SegmentPen protocol.

    Args:

        other_pen: another SegmentPen used to draw the transformed outline.
        max_err: maximum approximation error in font units. For optimal results,
            if you know the UPEM of the font, we recommend setting this to a
            value equal, or close to UPEM / 1000.
        reverse_direction: flip the contours' direction but keep starting point.
        stats: a dictionary counting the point numbers of quadratic segments.
        all_quadratic: if True (default), only quadratic b-splines are generated.
            if False, quadratic curves or cubic curves are generated depending
            on which one is more economical.
    """

    def __init__(
        self,
        other_pen,
        max_err,
        reverse_direction=False,
        stats=None,
        all_quadratic=True,
    ):
        if reverse_direction:
            other_pen = ReverseContourPen(other_pen)
        super().__init__(other_pen)
        self.max_err = max_err
        self.stats = stats
        self.all_quadratic = all_quadratic

    def _convert_curve(self, pt1, pt2, pt3):
        curve = (self.current_pt, pt1, pt2, pt3)
        result = curve_to_quadratic(curve, self.max_err, self.all_quadratic)
        if self.stats is not None:
            n = str(len(result) - 2)
            self.stats[n] = self.stats.get(n, 0) + 1
        if self.all_quadratic:
            self.qCurveTo(*result[1:])
        else:
            if len(result) == 3:
                self.qCurveTo(*result[1:])
            else:
                assert len(result) == 4
                super().curveTo(*result[1:])

    def curveTo(self, *points):
        n = len(points)
        if n == 3:
            # this is the most common case, so we special-case it
            self._convert_curve(*points)
        elif n > 3:
            for segment in decomposeSuperBezierSegment(points):
                self._convert_curve(*segment)
        else:
            self.qCurveTo(*points)


class Cu2QuPointPen(BasePointToSegmentPen):
    """A filter pen to convert cubic bezier curves to quadratic b-splines
    using the FontTools PointPen protocol.

    Args:
        other_point_pen: another PointPen used to draw the transformed outline.
        max_err: maximum approximation error in font units. For optimal results,
            if you know the UPEM of the font, we recommend setting this to a
            value equal, or close to UPEM / 1000.
        reverse_direction: reverse the winding direction of all contours.
        stats: a dictionary counting the point numbers of quadratic segments.
        all_quadratic: if True (default), only quadratic b-splines are generated.
            if False, quadratic curves or cubic curves are generated depending
            on which one is more economical.
    """

    __points_required = {
        "move": (1, operator.eq),
        "line": (1, operator.eq),
        "qcurve": (2, operator.ge),
        "curve": (3, operator.eq),
    }

    def __init__(
        self,
        other_point_pen,
        max_err,
        reverse_direction=False,
        stats=None,
        all_quadratic=True,
    ):
        BasePointToSegmentPen.__init__(self)
        if reverse_direction:
            self.pen = ReverseContourPointPen(other_point_pen)
        else:
            self.pen = other_point_pen
        self.max_err = max_err
        self.stats = stats
        self.all_quadratic = all_quadratic

    def _flushContour(self, segments):
        assert len(segments) >= 1
        closed = segments[0][0] != "move"
        new_segments = []
        prev_points = segments[-1][1]
        prev_on_curve = prev_points[-1][0]
        for segment_type, points in segments:
            if segment_type == "curve":
                for sub_points in self._split_super_bezier_segments(points):
                    on_curve, smooth, name, kwargs = sub_points[-1]
                    bcp1, bcp2 = sub_points[0][0], sub_points[1][0]
                    cubic = [prev_on_curve, bcp1, bcp2, on_curve]
                    quad = curve_to_quadratic(cubic, self.max_err, self.all_quadratic)
                    if self.stats is not None:
                        n = str(len(quad) - 2)
                        self.stats[n] = self.stats.get(n, 0) + 1
                    new_points = [(pt, False, None, {}) for pt in quad[1:-1]]
                    new_points.append((on_curve, smooth, name, kwargs))
                    if self.all_quadratic or len(new_points) == 2:
                        new_segments.append(["qcurve", new_points])
                    else:
                        new_segments.append(["curve", new_points])
                    prev_on_curve = sub_points[-1][0]
            else:
                new_segments.append([segment_type, points])
                prev_on_curve = points[-1][0]
        if closed:
            # the BasePointToSegmentPen.endPath method that calls _flushContour
            # rotates the point list of closed contours so that they end with
            # the first on-curve point. We restore the original starting point.
            new_segments = new_segments[-1:] + new_segments[:-1]
        self._drawPoints(new_segments)

    def _split_super_bezier_segments(self, points):
        sub_segments = []
        # n is the number of control points
        n = len(points) - 1
        if n == 2:
            # a simple bezier curve segment
            sub_segments.append(points)
        elif n > 2:
            # a "super" bezier; decompose it
            on_curve, smooth, name, kwargs = points[-1]
            num_sub_segments = n - 1
            for i, sub_points in enumerate(
                decomposeSuperBezierSegment([pt for pt, _, _, _ in points])
            ):
                new_segment = []
                for point in sub_points[:-1]:
                    new_segment.append((point, False, None, {}))
                if i == (num_sub_segments - 1):
                    # the last on-curve keeps its original attributes
                    new_segment.append((on_curve, smooth, name, kwargs))
                else:
                    # on-curves of sub-segments are always "smooth"
                    new_segment.append((sub_points[-1], True, None, {}))
                sub_segments.append(new_segment)
        else:
            raise AssertionError("expected 2 control points, found: %d" % n)
        return sub_segments

    def _drawPoints(self, segments):
        pen = self.pen
        pen.beginPath()
        last_offcurves = []
        points_required = self.__points_required
        for i, (segment_type, points) in enumerate(segments):
            if segment_type in points_required:
                n, op = points_required[segment_type]
                assert op(len(points), n), (
                    f"illegal {segment_type!r} segment point count: "
                    f"expected {n}, got {len(points)}"
                )
                offcurves = points[:-1]
                if i == 0:
                    # any off-curve points preceding the first on-curve
                    # will be appended at the end of the contour
                    last_offcurves = offcurves
                else:
                    for pt, smooth, name, kwargs in offcurves:
                        pen.addPoint(pt, None, smooth, name, **kwargs)
                pt, smooth, name, kwargs = points[-1]
                if pt is None:
                    assert segment_type == "qcurve"
                    # special quadratic contour with no on-curve points:
                    # we need to skip the "None" point. See also the Pen
                    # protocol's qCurveTo() method and fontTools.pens.basePen
                    pass
                else:
                    pen.addPoint(pt, segment_type, smooth, name, **kwargs)
            else:
                raise AssertionError("unexpected segment type: %r" % segment_type)
        for pt, smooth, name, kwargs in last_offcurves:
            pen.addPoint(pt, None, smooth, name, **kwargs)
        pen.endPath()

    def addComponent(self, baseGlyphName, transformation):
        assert self.currentPath is None
        self.pen.addComponent(baseGlyphName, transformation)


class Cu2QuMultiPen:
    """A filter multi-pen to convert cubic bezier curves to quadratic b-splines
    in a interpolation-compatible manner, using the FontTools SegmentPen protocol.

    Args:

        other_pens: list of SegmentPens used to draw the transformed outlines.
        max_err: maximum approximation error in font units. For optimal results,
            if you know the UPEM of the font, we recommend setting this to a
            value equal, or close to UPEM / 1000.
        reverse_direction: flip the contours' direction but keep starting point.

    This pen does not follow the normal SegmentPen protocol. Instead, its
    moveTo/lineTo/qCurveTo/curveTo methods take a list of tuples that are
    arguments that would normally be passed to a SegmentPen, one item for
    each of the pens in other_pens.
    """

    # TODO Simplify like 3e8ebcdce592fe8a59ca4c3a294cc9724351e1ce
    # Remove start_pts and _add_moveTO

    def __init__(self, other_pens, max_err, reverse_direction=False):
        if reverse_direction:
            other_pens = [
                ReverseContourPen(pen, outputImpliedClosingLine=True)
                for pen in other_pens
            ]
        self.pens = other_pens
        self.max_err = max_err
        self.start_pts = None
        self.current_pts = None

    def _check_contour_is_open(self):
        if self.current_pts is None:
            raise AssertionError("moveTo is required")

    def _check_contour_is_closed(self):
        if self.current_pts is not None:
            raise AssertionError("closePath or endPath is required")

    def _add_moveTo(self):
        if self.start_pts is not None:
            for pt, pen in zip(self.start_pts, self.pens):
                pen.moveTo(*pt)
            self.start_pts = None

    def moveTo(self, pts):
        self._check_contour_is_closed()
        self.start_pts = self.current_pts = pts
        self._add_moveTo()

    def lineTo(self, pts):
        self._check_contour_is_open()
        self._add_moveTo()
        for pt, pen in zip(pts, self.pens):
            pen.lineTo(*pt)
        self.current_pts = pts

    def qCurveTo(self, pointsList):
        self._check_contour_is_open()
        if len(pointsList[0]) == 1:
            self.lineTo([(points[0],) for points in pointsList])
            return
        self._add_moveTo()
        current_pts = []
        for points, pen in zip(pointsList, self.pens):
            pen.qCurveTo(*points)
            current_pts.append((points[-1],))
        self.current_pts = current_pts

    def _curves_to_quadratic(self, pointsList):
        curves = []
        for current_pt, points in zip(self.current_pts, pointsList):
            curves.append(current_pt + points)
        quadratics = curves_to_quadratic(curves, [self.max_err] * len(curves))
        pointsList = []
        for quadratic in quadratics:
            pointsList.append(quadratic[1:])
        self.qCurveTo(pointsList)

    def curveTo(self, pointsList):
        self._check_contour_is_open()
        self._curves_to_quadratic(pointsList)

    def closePath(self):
        self._check_contour_is_open()
        if self.start_pts is None:
            for pen in self.pens:
                pen.closePath()
        self.current_pts = self.start_pts = None

    def endPath(self):
        self._check_contour_is_open()
        if self.start_pts is None:
            for pen in self.pens:
                pen.endPath()
        self.current_pts = self.start_pts = None

    def addComponent(self, glyphName, transformations):
        self._check_contour_is_closed()
        for trans, pen in zip(transformations, self.pens):
            pen.addComponent(glyphName, trans)