aboutsummaryrefslogtreecommitdiff
path: root/src/range_map.rs
blob: b09433c40225d01f1d015070d6ae609f7f0cf332 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
#![allow(dead_code)]

use std::{
    cmp,
    cmp::Ordering,
    collections::{btree_map, BTreeMap},
    fmt::{Debug, Error as FmtError, Formatter},
    iter::{FromIterator, FusedIterator, Peekable},
    ops::{Add, Bound, Range, Sub},
};

/// A map whose keys are stored as (half-open) ranges bounded
/// inclusively below and exclusively above `(start..end)`.
///
/// Contiguous and overlapping ranges that map to the same value
/// are coalesced into a single range.
#[derive(Clone)]
pub struct RangeMap<K, V> {
    // Wrap ranges so that they are `Ord`.
    // See `range_wrapper.rs` for explanation.
    btm: BTreeMap<RangeStartWrapper<K>, V>,
}

impl<K, V> Default for RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<K, V> RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    /// Makes a new empty `RangeMap`.
    #[inline]
    pub fn new() -> Self {
        RangeMap {
            btm: BTreeMap::new(),
        }
    }

    /// Returns a reference to the value corresponding to the given key,
    /// if the key is covered by any range in the map.
    #[inline]
    pub fn get(&self, key: &K) -> Option<&V> {
        self.get_key_value(key).map(|(_range, value)| value)
    }

    /// Returns the range-value pair (as a pair of references) corresponding
    /// to the given key, if the key is covered by any range in the map.
    #[inline]
    pub fn get_key_value(&self, key: &K) -> Option<(&Range<K>, &V)> {
        // The only stored range that could contain the given key is the
        // last stored range whose start is less than or equal to this key.
        let key_as_start = RangeStartWrapper::new(key.clone()..key.clone());

        self.btm
            .range((Bound::Unbounded, Bound::Included(key_as_start)))
            .next_back()
            .filter(|(range_start_wrapper, _value)| {
                // Does the only candidate range contain
                // the requested key?
                range_start_wrapper.range.contains(key)
            })
            .map(|(range_start_wrapper, value)| (&range_start_wrapper.range, value))
    }

    /// Returns `true` if any range in the map covers the specified key.
    #[inline]
    pub fn contains_key(&self, key: &K) -> bool {
        self.get(key).is_some()
    }

    /// Returns `true` if any part of the provided range overlaps with a range in the map.
    #[inline]
    pub fn contains_any(&self, range: &Range<K>) -> bool {
        self.range(range).next().is_some()
    }

    /// Returns `true` if all of the provided range is covered by ranges in the map.
    #[inline]
    pub fn contains_all(&self, range: &Range<K>) -> bool {
        self.gaps(range).next().is_none()
    }

    /// Gets an iterator over all pairs of key range and value,
    /// ordered by key range.
    ///
    /// The iterator element type is `(&'a Range<K>, &'a V)`.
    #[inline]
    pub fn iter(&self) -> Iter<'_, K, V> {
        Iter {
            inner: self.btm.iter(),
        }
    }

    /// Gets a mutable iterator over all pairs of key range and value,
    /// ordered by key range.
    ///
    /// The iterator element type is `(&'a Range<K>, &'a mut V)`.
    #[inline]
    pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
        IterMut {
            inner: self.btm.iter_mut(),
        }
    }

    /// Insert a pair of key range and value into the map.
    ///
    /// If the inserted range partially or completely overlaps any
    /// existing range in the map, then the existing range (or ranges) will be
    /// partially or completely replaced by the inserted range.
    ///
    /// If the inserted range either overlaps or is immediately adjacent
    /// any existing range _mapping to the same value_, then the ranges
    /// will be coalesced into a single contiguous range.
    ///
    /// # Panics
    ///
    /// Panics if range `start >= end`.
    pub fn insert(&mut self, range: Range<K>, value: V) {
        // We don't want to have to make empty ranges make sense;
        // they don't represent anything meaningful in this structure.
        assert!(range.start < range.end);

        // Wrap up the given range so that we can "borrow"
        // it as a wrapper reference to either its start or end.
        // See `range_wrapper.rs` for explanation of these hacks.
        let mut new_range_start_wrapper: RangeStartWrapper<K> = RangeStartWrapper::new(range);
        let new_value = value;

        // Is there a stored range either overlapping the start of
        // the range to insert or immediately preceding it?
        //
        // If there is any such stored range, it will be the last
        // whose start is less than or equal to the start of the range to insert,
        // or the one before that if both of the above cases exist.
        let mut candidates = self
            .btm
            .range((Bound::Unbounded, Bound::Included(&new_range_start_wrapper)))
            .rev()
            .take(2)
            .filter(|(stored_range_start_wrapper, _stored_value)| {
                // Does the candidate range either overlap
                // or immediately precede the range to insert?
                // (Remember that it might actually cover the _whole_
                // range to insert and then some.)
                stored_range_start_wrapper
                    .range
                    .touches(&new_range_start_wrapper.range)
            });

        if let Some(mut candidate) = candidates.next() {
            // Or the one before it if both cases described above exist.
            if let Some(another_candidate) = candidates.next() {
                candidate = another_candidate;
            }

            let (stored_range_start_wrapper, stored_value) =
                (candidate.0.clone(), candidate.1.clone());

            self.adjust_touching_ranges_for_insert(
                stored_range_start_wrapper,
                stored_value,
                &mut new_range_start_wrapper.range,
                &new_value,
            );
        }

        // Are there any stored ranges whose heads overlap or immediately
        // follow the range to insert?
        //
        // If there are any such stored ranges (that weren't already caught above),
        // their starts will fall somewhere after the start of the range to insert,
        // and on or before its end.
        //
        // This time around, if the latter holds, it also implies
        // the former so we don't need to check here if they touch.
        //
        // REVISIT: Possible micro-optimisation: `impl Borrow<T> for RangeStartWrapper<T>`
        // and use that to search here, to avoid constructing another `RangeStartWrapper`.
        let new_range_end_as_start = RangeStartWrapper::new(
            new_range_start_wrapper.range.end.clone()..new_range_start_wrapper.range.end.clone(),
        );

        while let Some((stored_range_start_wrapper, stored_value)) = self
            .btm
            .range((
                Bound::Included(&new_range_start_wrapper),
                Bound::Included(&new_range_end_as_start),
            ))
            .next()
        {
            // One extra exception: if we have different values,
            // and the stored range starts at the end of the range to insert,
            // then we don't want to keep looping forever trying to find more!
            #[allow(clippy::suspicious_operation_groupings)]
            if stored_range_start_wrapper.range.start == new_range_start_wrapper.range.end
                && *stored_value != new_value
            {
                // We're beyond the last stored range that could be relevant.
                // Avoid wasting time on irrelevant ranges, or even worse, looping forever.
                // (`adjust_touching_ranges_for_insert` below assumes that the given range
                // is relevant, and behaves very poorly if it is handed a range that it
                // shouldn't be touching.)
                break;
            }

            let stored_range_start_wrapper = stored_range_start_wrapper.clone();
            let stored_value = stored_value.clone();

            self.adjust_touching_ranges_for_insert(
                stored_range_start_wrapper,
                stored_value,
                &mut new_range_start_wrapper.range,
                &new_value,
            );
        }

        // Insert the (possibly expanded) new range, and we're done!
        self.btm.insert(new_range_start_wrapper, new_value);
    }

    /// Removes a range from the map, if all or any of it was present.
    ///
    /// If the range to be removed _partially_ overlaps any ranges
    /// in the map, then those ranges will be contracted to no
    /// longer cover the removed range.
    ///
    ///
    /// # Panics
    ///
    /// Panics if range `start >= end`.
    pub fn remove(&mut self, range: Range<K>) {
        // We don't want to have to make empty ranges make sense;
        // they don't represent anything meaningful in this structure.
        assert!(range.start < range.end);

        let range_start_wrapper: RangeStartWrapper<K> = RangeStartWrapper::new(range);
        let range = &range_start_wrapper.range;

        // Is there a stored range overlapping the start of
        // the range to insert?
        //
        // If there is any such stored range, it will be the last
        // whose start is less than or equal to the start of the range to insert.
        if let Some((stored_range_start_wrapper, stored_value)) = self
            .btm
            .range((Bound::Unbounded, Bound::Included(&range_start_wrapper)))
            .next_back()
            .filter(|(stored_range_start_wrapper, _stored_value)| {
                // Does the only candidate range overlap
                // the range to insert?
                stored_range_start_wrapper.range.overlaps(range)
            })
            .map(|(stored_range_start_wrapper, stored_value)| {
                (stored_range_start_wrapper.clone(), stored_value.clone())
            })
        {
            self.adjust_overlapping_ranges_for_remove(
                stored_range_start_wrapper,
                stored_value,
                range,
            );
        }

        // Are there any stored ranges whose heads overlap the range to insert?
        //
        // If there are any such stored ranges (that weren't already caught above),
        // their starts will fall somewhere after the start of the range to insert,
        // and before its end.
        //
        // REVISIT: Possible micro-optimisation: `impl Borrow<T> for RangeStartWrapper<T>`
        // and use that to search here, to avoid constructing another `RangeStartWrapper`.
        let new_range_end_as_start = RangeStartWrapper::new(range.end.clone()..range.end.clone());

        while let Some((stored_range_start_wrapper, stored_value)) = self
            .btm
            .range((
                Bound::Excluded(&range_start_wrapper),
                Bound::Excluded(&new_range_end_as_start),
            ))
            .next()
            .map(|(stored_range_start_wrapper, stored_value)| {
                (stored_range_start_wrapper.clone(), stored_value.clone())
            })
        {
            self.adjust_overlapping_ranges_for_remove(
                stored_range_start_wrapper,
                stored_value,
                range,
            );
        }
    }

    fn adjust_touching_ranges_for_insert(
        &mut self,
        stored_range_start_wrapper: RangeStartWrapper<K>,
        stored_value: V,
        new_range: &mut Range<K>,
        new_value: &V,
    ) {
        if stored_value == *new_value {
            // The ranges have the same value, so we can "adopt"
            // the stored range.
            //
            // This means that no matter how big or where the stored range is,
            // we will expand the new range's bounds to subsume it,
            // and then delete the stored range.
            new_range.start =
                cmp::min(&new_range.start, &stored_range_start_wrapper.range.start).clone();
            new_range.end = cmp::max(&new_range.end, &stored_range_start_wrapper.range.end).clone();
            self.btm.remove(&stored_range_start_wrapper);
        } else {
            // The ranges have different values.
            if new_range.overlaps(&stored_range_start_wrapper.range) {
                // The ranges overlap. This is a little bit more complicated.
                // Delete the stored range, and then add back between
                // 0 and 2 subranges at the ends of the range to insert.
                self.btm.remove(&stored_range_start_wrapper);
                if stored_range_start_wrapper.range.start < new_range.start {
                    // Insert the piece left of the range to insert.
                    self.btm.insert(
                        RangeStartWrapper::new(
                            stored_range_start_wrapper.range.start..new_range.start.clone(),
                        ),
                        stored_value.clone(),
                    );
                }
                if stored_range_start_wrapper.range.end > new_range.end {
                    // Insert the piece right of the range to insert.
                    self.btm.insert(
                        RangeStartWrapper::new(
                            new_range.end.clone()..stored_range_start_wrapper.range.end,
                        ),
                        stored_value,
                    );
                }
            } else {
                // No-op; they're not overlapping,
                // so we can just keep both ranges as they are.
            }
        }
    }

    fn adjust_overlapping_ranges_for_remove(
        &mut self,
        stored_range_start_wrapper: RangeStartWrapper<K>,
        stored_value: V,
        range_to_remove: &Range<K>,
    ) {
        // Delete the stored range, and then add back between
        // 0 and 2 subranges at the ends of the range to insert.
        self.btm.remove(&stored_range_start_wrapper);
        let stored_range = stored_range_start_wrapper.range;

        if stored_range.start < range_to_remove.start {
            // Insert the piece left of the range to insert.
            self.btm.insert(
                RangeStartWrapper::new(stored_range.start..range_to_remove.start.clone()),
                stored_value.clone(),
            );
        }

        if stored_range.end > range_to_remove.end {
            // Insert the piece right of the range to insert.
            self.btm.insert(
                RangeStartWrapper::new(range_to_remove.end.clone()..stored_range.end),
                stored_value,
            );
        }
    }

    /// Splits a range in two at the provided key.
    ///
    /// Does nothing if no range exists at the key, or if the key is at a range boundary.
    pub fn split_at(&mut self, key: &K) {
        // Find a range that contains the key, but doesn't start or end with the key.
        let bounds = (
            Bound::Unbounded,
            Bound::Excluded(RangeStartWrapper::new(key.clone()..key.clone())),
        );

        let range_to_remove = match self
            .btm
            .range(bounds)
            .next_back()
            .filter(|(range_start_wrapper, _value)| range_start_wrapper.range.contains(key))
        {
            Some((k, _v)) => k.clone(),
            None => return,
        };

        // Remove the range, and re-insert two new ranges with the same value, separated by the key.
        let value = self.btm.remove(&range_to_remove).unwrap();
        self.btm.insert(
            RangeStartWrapper::new(range_to_remove.range.start..key.clone()),
            value.clone(),
        );
        self.btm.insert(
            RangeStartWrapper::new(key.clone()..range_to_remove.range.end),
            value,
        );
    }

    /// Gets an iterator over all pairs of key range and value, where the key range overlaps with
    /// the provided range.
    ///
    /// The iterator element type is `(&Range<K>, &V)`.
    pub fn range(&self, range: &Range<K>) -> RangeIter<'_, K, V> {
        let start = self
            .get_key_value(&range.start)
            .map_or(&range.start, |(k, _v)| &k.start);
        let end = &range.end;

        RangeIter {
            inner: self.btm.range((
                Bound::Included(RangeStartWrapper::new(start.clone()..start.clone())),
                Bound::Excluded(RangeStartWrapper::new(end.clone()..end.clone())),
            )),
        }
    }

    /// Gets a mutable iterator over all pairs of key range and value, where the key range overlaps
    /// with the provided range.
    ///
    /// The iterator element type is `(&Range<K>, &mut V)`.
    pub fn range_mut(&mut self, range: &Range<K>) -> RangeMutIter<'_, K, V> {
        let start = self
            .get_key_value(&range.start)
            .map_or(&range.start, |(k, _v)| &k.start);
        let end = &range.end;
        let bounds = (
            Bound::Included(RangeStartWrapper::new(start.clone()..start.clone())),
            Bound::Excluded(RangeStartWrapper::new(end.clone()..end.clone())),
        );

        RangeMutIter {
            inner: self.btm.range_mut(bounds),
        }
    }

    /// Gets an iterator over all the maximally-sized ranges
    /// contained in `outer_range` that are not covered by
    /// any range stored in the map.
    ///
    /// The iterator element type is `Range<K>`.
    ///
    /// NOTE: Calling `gaps` eagerly finds the first gap,
    /// even if the iterator is never consumed.
    pub fn gaps<'a>(&'a self, outer_range: &'a Range<K>) -> Gaps<'a, K, V> {
        let mut keys = self.btm.keys().peekable();
        // Find the first potential gap.
        let mut candidate_start = &outer_range.start;

        while let Some(item) = keys.peek() {
            if item.range.end <= outer_range.start {
                // This range sits entirely before the start of
                // the outer range; just skip it.
                let _ = keys.next();
            } else if item.range.start <= outer_range.start {
                // This range overlaps the start of the
                // outer range, so the first possible candidate
                // range begins at its end.
                candidate_start = &item.range.end;
                let _ = keys.next();
            } else {
                // The rest of the items might contribute to gaps.
                break;
            }
        }

        Gaps {
            outer_range,
            keys,
            candidate_start,
        }
    }
}

/// An iterator over the entries of a `RangeMap`, ordered by key range.
///
/// The iterator element type is `(&'a Range<K>, &'a V)`.
///
/// This `struct` is created by the [`iter`] method on [`RangeMap`]. See its
/// documentation for more.
///
/// [`iter`]: RangeMap::iter
pub struct Iter<'a, K, V> {
    inner: btree_map::Iter<'a, RangeStartWrapper<K>, V>,
}

impl<'a, K, V> Iterator for Iter<'a, K, V>
where
    K: 'a,
    V: 'a,
{
    type Item = (&'a Range<K>, &'a V);

    fn next(&mut self) -> Option<(&'a Range<K>, &'a V)> {
        self.inner.next().map(|(by_start, v)| (&by_start.range, v))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, K, V> FusedIterator for Iter<'a, K, V> where K: Ord + Clone {}
impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> where K: Ord + Clone {}

/// An iterator over the entries of a `RangeMap`, ordered by key range.
///
/// The iterator element type is `(&'a Range<K>, &'a V)`.
///
/// This `struct` is created by the [`iter`] method on [`RangeMap`]. See its
/// documentation for more.
///
/// [`iter`]: RangeMap::iter
pub struct IterMut<'a, K, V> {
    inner: btree_map::IterMut<'a, RangeStartWrapper<K>, V>,
}

impl<'a, K, V> Iterator for IterMut<'a, K, V>
where
    K: 'a,
    V: 'a,
{
    type Item = (&'a Range<K>, &'a mut V);

    fn next(&mut self) -> Option<(&'a Range<K>, &'a mut V)> {
        self.inner.next().map(|(by_start, v)| (&by_start.range, v))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, K, V> FusedIterator for IterMut<'a, K, V> where K: Ord + Clone {}
impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> where K: Ord + Clone {}

/// An owning iterator over the entries of a `RangeMap`, ordered by key range.
///
/// The iterator element type is `(Range<K>, V)`.
///
/// This `struct` is created by the [`into_iter`] method on [`RangeMap`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`into_iter`]: IntoIterator::into_iter
pub struct IntoIter<K, V> {
    inner: btree_map::IntoIter<RangeStartWrapper<K>, V>,
}

impl<K, V> IntoIterator for RangeMap<K, V> {
    type Item = (Range<K>, V);
    type IntoIter = IntoIter<K, V>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            inner: self.btm.into_iter(),
        }
    }
}

impl<K, V> Iterator for IntoIter<K, V> {
    type Item = (Range<K>, V);

    fn next(&mut self) -> Option<(Range<K>, V)> {
        self.inner.next().map(|(by_start, v)| (by_start.range, v))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<K, V> FusedIterator for IntoIter<K, V> where K: Ord + Clone {}
impl<K, V> ExactSizeIterator for IntoIter<K, V> where K: Ord + Clone {}

// We can't just derive this automatically, because that would
// expose irrelevant (and private) implementation details.
// Instead implement it in the same way that the underlying BTreeMap does.
impl<K: Debug, V: Debug> Debug for RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), FmtError> {
        f.debug_map().entries(self.iter()).finish()
    }
}

impl<K, V> FromIterator<(Range<K>, V)> for RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    fn from_iter<T: IntoIterator<Item = (Range<K>, V)>>(iter: T) -> Self {
        let mut range_map = RangeMap::new();
        range_map.extend(iter);
        range_map
    }
}

impl<K, V> Extend<(Range<K>, V)> for RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    fn extend<T: IntoIterator<Item = (Range<K>, V)>>(&mut self, iter: T) {
        iter.into_iter().for_each(move |(k, v)| {
            self.insert(k, v);
        })
    }
}

/// An iterator over entries of a `RangeMap` whose range overlaps with a specified range.
///
/// The iterator element type is `(&'a Range<K>, &'a V)`.
///
/// This `struct` is created by the [`range`] method on [`RangeMap`]. See its
/// documentation for more.
///
/// [`range`]: RangeMap::range
pub struct RangeIter<'a, K, V> {
    inner: btree_map::Range<'a, RangeStartWrapper<K>, V>,
}

impl<'a, K, V> FusedIterator for RangeIter<'a, K, V> where K: Ord + Clone {}

impl<'a, K, V> Iterator for RangeIter<'a, K, V>
where
    K: 'a,
    V: 'a,
{
    type Item = (&'a Range<K>, &'a V);

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|(by_start, v)| (&by_start.range, v))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

/// A mutable iterator over entries of a `RangeMap` whose range overlaps with a specified range.
///
/// The iterator element type is `(&'a Range<K>, &'a mut V)`.
///
/// This `struct` is created by the [`range_mut`] method on [`RangeMap`]. See its
/// documentation for more.
///
/// [`range_mut`]: RangeMap::range_mut
pub struct RangeMutIter<'a, K, V> {
    inner: btree_map::RangeMut<'a, RangeStartWrapper<K>, V>,
}

impl<'a, K, V> FusedIterator for RangeMutIter<'a, K, V> where K: Ord + Clone {}

impl<'a, K, V> Iterator for RangeMutIter<'a, K, V>
where
    K: 'a,
    V: 'a,
{
    type Item = (&'a Range<K>, &'a mut V);

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|(by_start, v)| (&by_start.range, v))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

/// An iterator over all ranges not covered by a `RangeMap`.
///
/// The iterator element type is `Range<K>`.
///
/// This `struct` is created by the [`gaps`] method on [`RangeMap`]. See its
/// documentation for more.
///
/// [`gaps`]: RangeMap::gaps
pub struct Gaps<'a, K, V> {
    outer_range: &'a Range<K>,
    keys: Peekable<btree_map::Keys<'a, RangeStartWrapper<K>, V>>,
    candidate_start: &'a K,
}

// `Gaps` is always fused. (See definition of `next` below.)
impl<'a, K, V> FusedIterator for Gaps<'a, K, V> where K: Ord + Clone {}

impl<'a, K, V> Iterator for Gaps<'a, K, V>
where
    K: Ord + Clone,
{
    type Item = Range<K>;

    fn next(&mut self) -> Option<Self::Item> {
        if *self.candidate_start >= self.outer_range.end {
            // We've already passed the end of the outer range;
            // there are no more gaps to find.
            return None;
        }

        // Figure out where this gap ends.
        let (gap_end, mut next_candidate_start) = if let Some(next_item) = self.keys.next() {
            if next_item.range.start < self.outer_range.end {
                // The gap goes up until the start of the next item,
                // and the next candidate starts after it.
                (&next_item.range.start, &next_item.range.end)
            } else {
                // The item sits after the end of the outer range,
                // so this gap ends at the end of the outer range.
                // This also means there will be no more gaps.
                (&self.outer_range.end, &self.outer_range.end)
            }
        } else {
            // There's no next item; the end is at the
            // end of the outer range.
            // This also means there will be no more gaps.
            (&self.outer_range.end, &self.outer_range.end)
        };

        // Find the start of the next gap.
        while let Some(next_item) = self.keys.peek() {
            if next_item.range.start == *next_candidate_start {
                // There's another item at the start of our candidate range.
                // Gaps can't have zero width, so skip to the end of this
                // item and try again.
                next_candidate_start = &next_item.range.end;
                self.keys.next().expect("We just checked that this exists");
            } else {
                // We found an item that actually has a gap before it.
                break;
            }
        }

        // Move the next candidate gap start past the end
        // of this gap, and yield the gap we found.
        let gap = self.candidate_start.clone()..gap_end.clone();
        self.candidate_start = next_candidate_start;
        Some(gap)
    }
}

// Wrappers to allow storing (and sorting/searching)
// ranges as the keys of a `BTreeMap`.
//
// We can do this because we maintain the invariants
// that the order of range starts is the same as the order
// of range ends, and that no two stored ranges have the
// same start or end as each other.
//
// NOTE: Be very careful not to accidentally use these
// if you really do want to compare equality of the
// inner range!

//
// Range start wrapper
//

#[derive(Eq, Debug, Clone)]
pub struct RangeStartWrapper<T> {
    pub range: Range<T>,
}

impl<T> RangeStartWrapper<T> {
    #[inline]
    pub fn new(range: Range<T>) -> RangeStartWrapper<T> {
        RangeStartWrapper { range }
    }
}

impl<T> PartialEq for RangeStartWrapper<T>
where
    T: Eq,
{
    fn eq(&self, other: &RangeStartWrapper<T>) -> bool {
        self.range.start == other.range.start
    }
}

impl<T> Ord for RangeStartWrapper<T>
where
    T: Ord,
{
    fn cmp(&self, other: &RangeStartWrapper<T>) -> Ordering {
        self.range.start.cmp(&other.range.start)
    }
}

impl<T> PartialOrd for RangeStartWrapper<T>
where
    T: Ord,
{
    fn partial_cmp(&self, other: &RangeStartWrapper<T>) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

pub trait RangeExt<T> {
    fn overlaps(&self, other: &Self) -> bool;
    fn touches(&self, other: &Self) -> bool;
}

impl<T> RangeExt<T> for Range<T>
where
    T: Ord,
{
    fn overlaps(&self, other: &Self) -> bool {
        // Strictly less than, because ends are excluded.
        cmp::max(&self.start, &other.start) < cmp::min(&self.end, &other.end)
    }

    fn touches(&self, other: &Self) -> bool {
        // Less-than-or-equal-to because if one end is excluded, the other is included.
        // I.e. the two could be joined into a single range, because they're overlapping
        // or immediately adjacent.
        cmp::max(&self.start, &other.start) <= cmp::min(&self.end, &other.end)
    }
}

/// Minimal version of unstable [`Step`](std::iter::Step) trait
/// from the Rust standard library.
///
/// This is needed for [`RangeInclusiveMap`](crate::RangeInclusiveMap)
/// because ranges stored as its keys interact with each other
/// when the start of one is _adjacent_ the end of another.
/// I.e. we need a concept of successor values rather than just
/// equality, and that is what `Step` will
/// eventually provide once it is stabilized.
///
/// **NOTE:** This will likely be deprecated and then eventually
/// removed once the standard library's `Step`
/// trait is stabilised, as most crates will then likely implement `Step`
/// for their types where appropriate.
///
/// See [this issue](https://github.com/rust-lang/rust/issues/42168)
/// for details about that stabilization process.
pub trait StepLite {
    /// Returns the _successor_ of `self`.
    ///
    /// If this would overflow the range of values supported by `Self`,
    /// this function is allowed to panic, wrap, or saturate.
    /// The suggested behavior is to panic when debug assertions are enabled,
    /// and to wrap or saturate otherwise.
    fn add_one(&self) -> Self;

    /// Returns the _predecessor_ of `self`.
    ///
    /// If this would overflow the range of values supported by `Self`,
    /// this function is allowed to panic, wrap, or saturate.
    /// The suggested behavior is to panic when debug assertions are enabled,
    /// and to wrap or saturate otherwise.
    fn sub_one(&self) -> Self;
}

// Implement for all common integer types.
macro_rules! impl_step_lite {
    ($($t:ty)*) => ($(
        impl StepLite for $t {
            #[inline]
            fn add_one(&self) -> Self {
                Add::add(*self, 1)
            }

            #[inline]
            fn sub_one(&self) -> Self {
                Sub::sub(*self, 1)
            }
        }
    )*)
}

impl_step_lite!(usize u8 u16 u32 u64 u128 i8 i16 i32 i64 i128);

// TODO: When on nightly, a blanket implementation for
// all types that implement `std::iter::Step` instead
// of the auto-impl above.

/// Successor and predecessor functions defined for `T`,
/// but as free functions rather than methods on `T` itself.
///
/// This is useful as a workaround for Rust's "orphan rules",
/// which prevent you from implementing [`StepLite`](crate::StepLite) for `T` if `T`
/// is a foreign type.
///
/// **NOTE:** This will likely be deprecated and then eventually
/// removed once the standard library's [`Step`](std::iter::Step)
/// trait is stabilised, as most crates will then likely implement `Step`
/// for their types where appropriate.
///
/// See [this issue](https://github.com/rust-lang/rust/issues/42168)
/// for details about that stabilization process.
///
/// There is also a blanket implementation of `StepFns` for all
/// types implementing `StepLite`. Consumers of this crate should
/// prefer to implement `StepLite` for their own types, and only
/// fall back to `StepFns` when dealing with foreign types.
pub trait StepFns<T> {
    /// Returns the _successor_ of value `start`.
    ///
    /// If this would overflow the range of values supported by `Self`,
    /// this function is allowed to panic, wrap, or saturate.
    /// The suggested behavior is to panic when debug assertions are enabled,
    /// and to wrap or saturate otherwise.
    fn add_one(start: &T) -> T;

    /// Returns the _predecessor_ of value `start`.
    ///
    /// If this would overflow the range of values supported by `Self`,
    /// this function is allowed to panic, wrap, or saturate.
    /// The suggested behavior is to panic when debug assertions are enabled,
    /// and to wrap or saturate otherwise.
    fn sub_one(start: &T) -> T;
}

impl<T> StepFns<T> for T
where
    T: StepLite,
{
    fn add_one(start: &T) -> T {
        start.add_one()
    }

    fn sub_one(start: &T) -> T {
        start.sub_one()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::{format, vec, vec::Vec};

    trait RangeMapExt<K, V> {
        fn to_vec(&self) -> Vec<(Range<K>, V)>;
    }

    impl<K, V> RangeMapExt<K, V> for RangeMap<K, V>
    where
        K: Ord + Clone,
        V: Eq + Clone,
    {
        fn to_vec(&self) -> Vec<(Range<K>, V)> {
            self.iter().map(|(kr, v)| (kr.clone(), v.clone())).collect()
        }
    }

    //
    // Insertion tests
    //

    #[test]
    fn empty_map_is_empty() {
        let range_map: RangeMap<u32, bool> = RangeMap::new();
        assert_eq!(range_map.to_vec(), vec![]);
    }

    #[test]
    fn insert_into_empty_map() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(0..50, false);
        assert_eq!(range_map.to_vec(), vec![(0..50, false)]);
    }

    #[test]
    fn new_same_value_immediately_following_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    #[test]
    fn new_different_value_immediately_following_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        range_map.insert(3..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..3, false), (3..5, true)]);
    }

    #[test]
    fn new_same_value_overlapping_end_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-----◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    #[test]
    fn new_different_value_overlapping_end_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-----◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        range_map.insert(3..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..3, false), (3..5, true)]);
    }

    #[test]
    fn new_same_value_immediately_preceding_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    #[test]
    fn new_different_value_immediately_preceding_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        range_map.insert(3..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..3, false), (3..5, true)]);
    }

    #[test]
    fn new_same_value_wholly_inside_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        range_map.insert(1..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    #[test]
    fn new_different_value_wholly_inside_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-------◇ ◌ ◌ ◌ ◌
        range_map.insert(1..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◌ ●-◌ ◌ ◌ ◌ ◌
        assert_eq!(
            range_map.to_vec(),
            vec![(1..2, true), (2..4, false), (4..5, true)]
        );
    }

    #[test]
    fn replace_at_end_of_existing_range_should_coalesce() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    //
    // Get* tests
    //

    #[test]
    fn get() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(0..50, false);
        assert_eq!(range_map.get(&49), Some(&false));
        assert_eq!(range_map.get(&50), None);
    }

    #[test]
    fn get_key_value() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(0..50, false);
        assert_eq!(range_map.get_key_value(&49), Some((&(0..50), &false)));
        assert_eq!(range_map.get_key_value(&50), None);
    }

    //
    // Removal tests
    //

    #[test]
    fn remove_from_empty_map() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.remove(0..50);
        assert_eq!(range_map.to_vec(), vec![]);
    }

    #[test]
    fn remove_non_covered_range_before_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(0..25);
        assert_eq!(range_map.to_vec(), vec![(25..75, false)]);
    }

    #[test]
    fn remove_non_covered_range_after_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(75..100);
        assert_eq!(range_map.to_vec(), vec![(25..75, false)]);
    }

    #[test]
    fn remove_overlapping_start_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(0..30);
        assert_eq!(range_map.to_vec(), vec![(30..75, false)]);
    }

    #[test]
    fn remove_middle_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(30..70);
        assert_eq!(range_map.to_vec(), vec![(25..30, false), (70..75, false)]);
    }

    #[test]
    fn remove_overlapping_end_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(70..100);
        assert_eq!(range_map.to_vec(), vec![(25..70, false)]);
    }

    #[test]
    fn remove_exactly_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(25..75);
        assert_eq!(range_map.to_vec(), vec![]);
    }

    #[test]
    fn remove_superset_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(0..100);
        assert_eq!(range_map.to_vec(), vec![]);
    }

    // Gaps tests

    #[test]
    fn whole_range_is_a_gap() {
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
        let range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-------------◇ ◌
        let outer_range = 1..8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(1..8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn whole_range_is_covered_exactly() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---------◌ ◌ ◌ ◌
        range_map.insert(1..6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆---------◇ ◌ ◌ ◌
        let outer_range = 1..6;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield no gaps.
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_before_outer_range() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◇ ◌
        let outer_range = 5..8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(5..8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_touching_start_of_outer_range() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        range_map.insert(1..5, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◇ ◌
        let outer_range = 5..8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(5..8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_overlapping_start_of_outer_range() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---------◌ ◌ ◌ ◌
        range_map.insert(1..6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◇ ◌
        let outer_range = 5..8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield from the end of the stored item
        // to the end of the outer range.
        assert_eq!(gaps.next(), Some(6..8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_starting_at_start_of_outer_range() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ●-◌ ◌ ◌ ◌
        range_map.insert(5..6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◇ ◌
        let outer_range = 5..8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield from the item onwards.
        assert_eq!(gaps.next(), Some(6..8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn items_floating_inside_outer_range() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ●-◌ ◌ ◌ ◌
        range_map.insert(5..6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●-◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(3..4, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-------------◇ ◌
        let outer_range = 1..8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield gaps at start, between items,
        // and at end.
        assert_eq!(gaps.next(), Some(1..3));
        assert_eq!(gaps.next(), Some(4..5));
        assert_eq!(gaps.next(), Some(6..8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_ending_at_end_of_outer_range() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◌ ◌ ●-◌ ◌
        range_map.insert(7..8, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◇ ◌
        let outer_range = 5..8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield from the start of the outer range
        // up to the start of the stored item.
        assert_eq!(gaps.next(), Some(5..7));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_overlapping_end_of_outer_range() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ●---◌ ◌ ◌ ◌
        range_map.insert(4..6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◆-----◇ ◌ ◌ ◌ ◌
        let outer_range = 2..5;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield from the start of the outer range
        // up to the start of the stored item.
        assert_eq!(gaps.next(), Some(2..4));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_touching_end_of_outer_range() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ●-------◌ ◌
        range_map.insert(4..8, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-----◇ ◌ ◌ ◌ ◌ ◌
        let outer_range = 1..4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(1..4));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_after_outer_range() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◌ ●---◌ ◌
        range_map.insert(6..7, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-----◇ ◌ ◌ ◌ ◌ ◌
        let outer_range = 1..4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(1..4));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn empty_outer_range_with_items_away_from_both_sides() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆---◇ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆---◇ ◌ ◌
        range_map.insert(5..7, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◆ ◌ ◌ ◌ ◌ ◌
        let outer_range = 4..4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield no gaps.
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn empty_outer_range_with_items_touching_both_sides() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..4, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌
        range_map.insert(4..6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◆ ◌ ◌ ◌ ◌ ◌
        let outer_range = 4..4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield no gaps.
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn empty_outer_range_with_item_straddling() {
        let mut range_map: RangeMap<u32, ()> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◆-----◇ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..5, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◆ ◌ ◌ ◌ ◌ ◌
        let outer_range = 4..4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield no gaps.
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn no_empty_gaps() {
        // Make two ranges different values so they don't
        // get coalesced.
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ●-◌ ◌ ◌ ◌ ◌
        range_map.insert(4..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●-◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(3..4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-------------◇ ◌
        let outer_range = 1..8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield gaps at start and end, but not between the
        // two touching items. (4 is covered, so there should be no gap.)
        assert_eq!(gaps.next(), Some(1..3));
        assert_eq!(gaps.next(), Some(5..8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    ///
    /// impl Debug
    ///

    #[test]
    fn map_debug_repr_looks_right() {
        let mut map: RangeMap<u32, ()> = RangeMap::new();

        // Empty
        assert_eq!(format!("{:?}", map), "{}");

        // One entry
        map.insert(2..5, ());
        assert_eq!(format!("{:?}", map), "{2..5: ()}");

        // Many entries
        map.insert(6..7, ());
        map.insert(8..9, ());
        assert_eq!(format!("{:?}", map), "{2..5: (), 6..7: (), 8..9: ()}");
    }

    // Iterator Tests

    #[test]
    fn into_iter_matches_iter() {
        // Just use vec since that's the same implementation we'd expect
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(1..3, false);
        range_map.insert(3..5, true);

        let cloned = range_map.to_vec();
        let consumed = range_map.into_iter().collect::<Vec<_>>();

        // Correct value
        assert_eq!(cloned, vec![(1..3, false), (3..5, true)]);

        // Equality
        assert_eq!(cloned, consumed);
    }
}