aboutsummaryrefslogtreecommitdiff
path: root/src/f32/vec2.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/f32/vec2.rs')
-rw-r--r--src/f32/vec2.rs248
1 files changed, 193 insertions, 55 deletions
diff --git a/src/f32/vec2.rs b/src/f32/vec2.rs
index fc92447..85f7fbd 100644
--- a/src/f32/vec2.rs
+++ b/src/f32/vec2.rs
@@ -1,18 +1,15 @@
// Generated from vec.rs.tera template. Edit the template, not the generated file.
-use crate::{BVec2, Vec3};
+use crate::{f32::math, BVec2, Vec3};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
-#[cfg(feature = "libm")]
-#[allow(unused_imports)]
-use num_traits::Float;
-
/// Creates a 2-dimensional vector.
#[inline(always)]
+#[must_use]
pub const fn vec2(x: f32, y: f32) -> Vec2 {
Vec2::new(x, y)
}
@@ -37,19 +34,31 @@ impl Vec2 {
/// All negative ones.
pub const NEG_ONE: Self = Self::splat(-1.0);
- /// All NAN.
+ /// All `f32::MIN`.
+ pub const MIN: Self = Self::splat(f32::MIN);
+
+ /// All `f32::MAX`.
+ pub const MAX: Self = Self::splat(f32::MAX);
+
+ /// All `f32::NAN`.
pub const NAN: Self = Self::splat(f32::NAN);
- /// A unit-length vector pointing along the positive X axis.
+ /// All `f32::INFINITY`.
+ pub const INFINITY: Self = Self::splat(f32::INFINITY);
+
+ /// All `f32::NEG_INFINITY`.
+ pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
+
+ /// A unit vector pointing along the positive X axis.
pub const X: Self = Self::new(1.0, 0.0);
- /// A unit-length vector pointing along the positive Y axis.
+ /// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0.0, 1.0);
- /// A unit-length vector pointing along the negative X axis.
+ /// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self::new(-1.0, 0.0);
- /// A unit-length vector pointing along the negative Y axis.
+ /// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self::new(0.0, -1.0);
/// The unit axes.
@@ -57,12 +66,14 @@ impl Vec2 {
/// Creates a new vector.
#[inline(always)]
+ #[must_use]
pub const fn new(x: f32, y: f32) -> Self {
Self { x, y }
}
/// Creates a vector with all elements set to `v`.
#[inline]
+ #[must_use]
pub const fn splat(v: f32) -> Self {
Self { x: v, y: v }
}
@@ -73,21 +84,24 @@ impl Vec2 {
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
+ #[must_use]
pub fn select(mask: BVec2, if_true: Self, if_false: Self) -> Self {
Self {
- x: if mask.x { if_true.x } else { if_false.x },
- y: if mask.y { if_true.y } else { if_false.y },
+ x: if mask.test(0) { if_true.x } else { if_false.x },
+ y: if mask.test(1) { if_true.y } else { if_false.y },
}
}
/// Creates a new vector from an array.
#[inline]
+ #[must_use]
pub const fn from_array(a: [f32; 2]) -> Self {
Self::new(a[0], a[1])
}
/// `[x, y]`
#[inline]
+ #[must_use]
pub const fn to_array(&self) -> [f32; 2] {
[self.x, self.y]
}
@@ -98,6 +112,7 @@ impl Vec2 {
///
/// Panics if `slice` is less than 2 elements long.
#[inline]
+ #[must_use]
pub const fn from_slice(slice: &[f32]) -> Self {
Self::new(slice[0], slice[1])
}
@@ -115,18 +130,21 @@ impl Vec2 {
/// Creates a 3D vector from `self` and the given `z` value.
#[inline]
+ #[must_use]
pub const fn extend(self, z: f32) -> Vec3 {
Vec3::new(self.x, self.y, z)
}
/// Computes the dot product of `self` and `rhs`.
#[inline]
+ #[must_use]
pub fn dot(self, rhs: Self) -> f32 {
(self.x * rhs.x) + (self.y * rhs.y)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
+ #[must_use]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self::splat(self.dot(rhs))
}
@@ -135,6 +153,7 @@ impl Vec2 {
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
+ #[must_use]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
@@ -146,6 +165,7 @@ impl Vec2 {
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
+ #[must_use]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
@@ -161,6 +181,7 @@ impl Vec2 {
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
+ #[must_use]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
@@ -170,6 +191,7 @@ impl Vec2 {
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
+ #[must_use]
pub fn min_element(self) -> f32 {
self.x.min(self.y)
}
@@ -178,6 +200,7 @@ impl Vec2 {
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
+ #[must_use]
pub fn max_element(self) -> f32 {
self.x.max(self.y)
}
@@ -188,6 +211,7 @@ impl Vec2 {
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmpeq(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y))
}
@@ -198,6 +222,7 @@ impl Vec2 {
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmpne(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y))
}
@@ -208,6 +233,7 @@ impl Vec2 {
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmpge(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y))
}
@@ -218,6 +244,7 @@ impl Vec2 {
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmpgt(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y))
}
@@ -228,6 +255,7 @@ impl Vec2 {
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmple(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.le(&rhs.x), self.y.le(&rhs.y))
}
@@ -238,16 +266,18 @@ impl Vec2 {
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmplt(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y))
}
/// Returns a vector containing the absolute value of each element of `self`.
#[inline]
+ #[must_use]
pub fn abs(self) -> Self {
Self {
- x: self.x.abs(),
- y: self.y.abs(),
+ x: math::abs(self.x),
+ y: math::abs(self.y),
}
}
@@ -257,19 +287,21 @@ impl Vec2 {
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
#[inline]
+ #[must_use]
pub fn signum(self) -> Self {
Self {
- x: self.x.signum(),
- y: self.y.signum(),
+ x: math::signum(self.x),
+ y: math::signum(self.y),
}
}
/// Returns a vector with signs of `rhs` and the magnitudes of `self`.
#[inline]
+ #[must_use]
pub fn copysign(self, rhs: Self) -> Self {
Self {
- x: self.x.copysign(rhs.x),
- y: self.y.copysign(rhs.y),
+ x: math::copysign(self.x, rhs.x),
+ y: math::copysign(self.y, rhs.y),
}
}
@@ -278,6 +310,7 @@ impl Vec2 {
/// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes
/// into the first lowest bit, element `y` into the second, etc.
#[inline]
+ #[must_use]
pub fn is_negative_bitmask(self) -> u32 {
(self.x.is_sign_negative() as u32) | (self.y.is_sign_negative() as u32) << 1
}
@@ -285,12 +318,14 @@ impl Vec2 {
/// Returns `true` if, and only if, all elements are finite. If any element is either
/// `NaN`, positive or negative infinity, this will return `false`.
#[inline]
+ #[must_use]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
+ #[must_use]
pub fn is_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan()
}
@@ -299,6 +334,7 @@ impl Vec2 {
///
/// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
#[inline]
+ #[must_use]
pub fn is_nan_mask(self) -> BVec2 {
BVec2::new(self.x.is_nan(), self.y.is_nan())
}
@@ -306,8 +342,9 @@ impl Vec2 {
/// Computes the length of `self`.
#[doc(alias = "magnitude")]
#[inline]
+ #[must_use]
pub fn length(self) -> f32 {
- self.dot(self).sqrt()
+ math::sqrt(self.dot(self))
}
/// Computes the squared length of `self`.
@@ -315,6 +352,7 @@ impl Vec2 {
/// This is faster than `length()` as it avoids a square root operation.
#[doc(alias = "magnitude2")]
#[inline]
+ #[must_use]
pub fn length_squared(self) -> f32 {
self.dot(self)
}
@@ -323,33 +361,58 @@ impl Vec2 {
///
/// For valid results, `self` must _not_ be of length zero.
#[inline]
+ #[must_use]
pub fn length_recip(self) -> f32 {
self.length().recip()
}
/// Computes the Euclidean distance between two points in space.
#[inline]
+ #[must_use]
pub fn distance(self, rhs: Self) -> f32 {
(self - rhs).length()
}
/// Compute the squared euclidean distance between two points in space.
#[inline]
+ #[must_use]
pub fn distance_squared(self, rhs: Self) -> f32 {
(self - rhs).length_squared()
}
+ /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
+ #[inline]
+ #[must_use]
+ pub fn div_euclid(self, rhs: Self) -> Self {
+ Self::new(
+ math::div_euclid(self.x, rhs.x),
+ math::div_euclid(self.y, rhs.y),
+ )
+ }
+
+ /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
+ ///
+ /// [Euclidean division]: f32::rem_euclid
+ #[inline]
+ #[must_use]
+ pub fn rem_euclid(self, rhs: Self) -> Self {
+ Self::new(
+ math::rem_euclid(self.x, rhs.x),
+ math::rem_euclid(self.y, rhs.y),
+ )
+ }
+
/// Returns `self` normalized to length 1.0.
///
/// For valid results, `self` must _not_ be of length zero, nor very close to zero.
///
- /// See also [`Self::try_normalize`] and [`Self::normalize_or_zero`].
+ /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
///
/// Panics
///
/// Will panic if `self` is zero length when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn normalize(self) -> Self {
#[allow(clippy::let_and_return)]
let normalized = self.mul(self.length_recip());
@@ -362,9 +425,9 @@ impl Vec2 {
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be `None`.
///
- /// See also [`Self::normalize_or_zero`].
- #[must_use]
+ /// See also [`Self::normalize_or_zero()`].
#[inline]
+ #[must_use]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
@@ -379,9 +442,9 @@ impl Vec2 {
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be zero.
///
- /// See also [`Self::try_normalize`].
- #[must_use]
+ /// See also [`Self::try_normalize()`].
#[inline]
+ #[must_use]
pub fn normalize_or_zero(self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
@@ -395,9 +458,10 @@ impl Vec2 {
///
/// Uses a precision threshold of `1e-6`.
#[inline]
+ #[must_use]
pub fn is_normalized(self) -> bool {
// TODO: do something with epsilon
- (self.length_squared() - 1.0).abs() <= 1e-4
+ math::abs(self.length_squared() - 1.0) <= 1e-4
}
/// Returns the vector projection of `self` onto `rhs`.
@@ -407,8 +471,8 @@ impl Vec2 {
/// # Panics
///
/// Will panic if `rhs` is zero length when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
@@ -425,8 +489,8 @@ impl Vec2 {
/// # Panics
///
/// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
@@ -438,8 +502,8 @@ impl Vec2 {
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
@@ -455,8 +519,8 @@ impl Vec2 {
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
@@ -464,30 +528,44 @@ impl Vec2 {
/// Returns a vector containing the nearest integer to a number for each element of `self`.
/// Round half-way cases away from 0.0.
#[inline]
+ #[must_use]
pub fn round(self) -> Self {
Self {
- x: self.x.round(),
- y: self.y.round(),
+ x: math::round(self.x),
+ y: math::round(self.y),
}
}
/// Returns a vector containing the largest integer less than or equal to a number for each
/// element of `self`.
#[inline]
+ #[must_use]
pub fn floor(self) -> Self {
Self {
- x: self.x.floor(),
- y: self.y.floor(),
+ x: math::floor(self.x),
+ y: math::floor(self.y),
}
}
/// Returns a vector containing the smallest integer greater than or equal to a number for
/// each element of `self`.
#[inline]
+ #[must_use]
pub fn ceil(self) -> Self {
Self {
- x: self.x.ceil(),
- y: self.y.ceil(),
+ x: math::ceil(self.x),
+ y: math::ceil(self.y),
+ }
+ }
+
+ /// Returns a vector containing the integer part each element of `self`. This means numbers are
+ /// always truncated towards zero.
+ #[inline]
+ #[must_use]
+ pub fn trunc(self) -> Self {
+ Self {
+ x: math::trunc(self.x),
+ y: math::trunc(self.y),
}
}
@@ -496,6 +574,7 @@ impl Vec2 {
///
/// Note that this is fast but not precise for large numbers.
#[inline]
+ #[must_use]
pub fn fract(self) -> Self {
self - self.floor()
}
@@ -503,22 +582,25 @@ impl Vec2 {
/// Returns a vector containing `e^self` (the exponential function) for each element of
/// `self`.
#[inline]
+ #[must_use]
pub fn exp(self) -> Self {
- Self::new(self.x.exp(), self.y.exp())
+ Self::new(math::exp(self.x), math::exp(self.y))
}
/// Returns a vector containing each element of `self` raised to the power of `n`.
#[inline]
+ #[must_use]
pub fn powf(self, n: f32) -> Self {
- Self::new(self.x.powf(n), self.y.powf(n))
+ Self::new(math::powf(self.x, n), math::powf(self.y, n))
}
/// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
#[inline]
+ #[must_use]
pub fn recip(self) -> Self {
Self {
- x: self.x.recip(),
- y: self.y.recip(),
+ x: 1.0 / self.x,
+ y: 1.0 / self.y,
}
}
@@ -529,6 +611,7 @@ impl Vec2 {
/// extrapolated.
#[doc(alias = "mix")]
#[inline]
+ #[must_use]
pub fn lerp(self, rhs: Self, s: f32) -> Self {
self + ((rhs - self) * s)
}
@@ -543,6 +626,7 @@ impl Vec2 {
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
+ #[must_use]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
@@ -553,33 +637,38 @@ impl Vec2 {
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
+ #[must_use]
pub fn clamp_length(self, min: f32, max: f32) -> Self {
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
- self * (length_sq.sqrt().recip() * min)
+ min * (self / math::sqrt(length_sq))
} else if length_sq > max * max {
- self * (length_sq.sqrt().recip() * max)
+ max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no more than `max`
+ #[inline]
+ #[must_use]
pub fn clamp_length_max(self, max: f32) -> Self {
let length_sq = self.length_squared();
if length_sq > max * max {
- self * (length_sq.sqrt().recip() * max)
+ max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no less than `min`
+ #[inline]
+ #[must_use]
pub fn clamp_length_min(self, min: f32) -> Self {
let length_sq = self.length_squared();
if length_sq < min * min {
- self * (length_sq.sqrt().recip() * min)
+ min * (self / math::sqrt(length_sq))
} else {
self
}
@@ -593,33 +682,50 @@ impl Vec2 {
/// and will be heavily dependant on designing algorithms with specific target hardware in
/// mind.
#[inline]
+ #[must_use]
pub fn mul_add(self, a: Self, b: Self) -> Self {
- Self::new(self.x.mul_add(a.x, b.x), self.y.mul_add(a.y, b.y))
+ Self::new(
+ math::mul_add(self.x, a.x, b.x),
+ math::mul_add(self.y, a.y, b.y),
+ )
}
/// Creates a 2D vector containing `[angle.cos(), angle.sin()]`. This can be used in
- /// conjunction with the `rotate` method, e.g. `Vec2::from_angle(PI).rotate(Vec2::Y)` will
- /// create the vector [-1, 0] and rotate `Vec2::Y` around it returning `-Vec2::Y`.
+ /// conjunction with the [`rotate()`][Self::rotate()] method, e.g.
+ /// `Vec2::from_angle(PI).rotate(Vec2::Y)` will create the vector `[-1, 0]`
+ /// and rotate [`Vec2::Y`] around it returning `-Vec2::Y`.
#[inline]
+ #[must_use]
pub fn from_angle(angle: f32) -> Self {
- let (sin, cos) = angle.sin_cos();
+ let (sin, cos) = math::sin_cos(angle);
Self { x: cos, y: sin }
}
- /// Returns the angle (in radians) between `self` and `rhs`.
+ /// Returns the angle (in radians) of this vector in the range `[-π, +π]`.
+ ///
+ /// The input does not need to be a unit vector however it must be non-zero.
+ #[inline]
+ #[must_use]
+ pub fn to_angle(self) -> f32 {
+ math::atan2(self.y, self.x)
+ }
+
+ /// Returns the angle (in radians) between `self` and `rhs` in the range `[-π, +π]`.
///
- /// The input vectors do not need to be unit length however they must be non-zero.
+ /// The inputs do not need to be unit vectors however they must be non-zero.
#[inline]
+ #[must_use]
pub fn angle_between(self, rhs: Self) -> f32 {
- use crate::FloatEx;
- let angle =
- (self.dot(rhs) / (self.length_squared() * rhs.length_squared()).sqrt()).acos_approx();
+ let angle = math::acos_approx(
+ self.dot(rhs) / math::sqrt(self.length_squared() * rhs.length_squared()),
+ );
- angle * self.perp_dot(rhs).signum()
+ angle * math::signum(self.perp_dot(rhs))
}
/// Returns a vector that is equal to `self` rotated by 90 degrees.
#[inline]
+ #[must_use]
pub fn perp(self) -> Self {
Self {
x: -self.y,
@@ -633,6 +739,7 @@ impl Vec2 {
#[doc(alias = "cross")]
#[doc(alias = "determinant")]
#[inline]
+ #[must_use]
pub fn perp_dot(self, rhs: Self) -> f32 {
(self.x * rhs.y) - (self.y * rhs.x)
}
@@ -640,8 +747,8 @@ impl Vec2 {
/// Returns `rhs` rotated by the angle of `self`. If `self` is normalized,
/// then this just rotation. This is what you usually want. Otherwise,
/// it will be like a rotation with a multiplication by `self`'s length.
- #[must_use]
#[inline]
+ #[must_use]
pub fn rotate(self, rhs: Self) -> Self {
Self {
x: self.x * rhs.x - self.y * rhs.y,
@@ -651,21 +758,52 @@ impl Vec2 {
/// Casts all elements of `self` to `f64`.
#[inline]
+ #[must_use]
pub fn as_dvec2(&self) -> crate::DVec2 {
crate::DVec2::new(self.x as f64, self.y as f64)
}
+ /// Casts all elements of `self` to `i16`.
+ #[inline]
+ #[must_use]
+ pub fn as_i16vec2(&self) -> crate::I16Vec2 {
+ crate::I16Vec2::new(self.x as i16, self.y as i16)
+ }
+
+ /// Casts all elements of `self` to `u16`.
+ #[inline]
+ #[must_use]
+ pub fn as_u16vec2(&self) -> crate::U16Vec2 {
+ crate::U16Vec2::new(self.x as u16, self.y as u16)
+ }
+
/// Casts all elements of `self` to `i32`.
#[inline]
+ #[must_use]
pub fn as_ivec2(&self) -> crate::IVec2 {
crate::IVec2::new(self.x as i32, self.y as i32)
}
/// Casts all elements of `self` to `u32`.
#[inline]
+ #[must_use]
pub fn as_uvec2(&self) -> crate::UVec2 {
crate::UVec2::new(self.x as u32, self.y as u32)
}
+
+ /// Casts all elements of `self` to `i64`.
+ #[inline]
+ #[must_use]
+ pub fn as_i64vec2(&self) -> crate::I64Vec2 {
+ crate::I64Vec2::new(self.x as i64, self.y as i64)
+ }
+
+ /// Casts all elements of `self` to `u64`.
+ #[inline]
+ #[must_use]
+ pub fn as_u64vec2(&self) -> crate::U64Vec2 {
+ crate::U64Vec2::new(self.x as u64, self.y as u64)
+ }
}
impl Default for Vec2 {