aboutsummaryrefslogtreecommitdiff
path: root/src/f32/scalar/vec3a.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/f32/scalar/vec3a.rs')
-rw-r--r--src/f32/scalar/vec3a.rs299
1 files changed, 83 insertions, 216 deletions
diff --git a/src/f32/scalar/vec3a.rs b/src/f32/scalar/vec3a.rs
index 040a140..311e1e0 100644
--- a/src/f32/scalar/vec3a.rs
+++ b/src/f32/scalar/vec3a.rs
@@ -1,28 +1,28 @@
// Generated from vec.rs.tera template. Edit the template, not the generated file.
-use crate::{f32::math, BVec3A, Vec2, Vec3, Vec4};
+use crate::{BVec3A, Vec2, Vec3, Vec4};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
+#[cfg(feature = "libm")]
+#[allow(unused_imports)]
+use num_traits::Float;
+
/// Creates a 3-dimensional vector.
#[inline(always)]
-#[must_use]
pub const fn vec3a(x: f32, y: f32, z: f32) -> Vec3A {
Vec3A::new(x, y, z)
}
-/// A 3-dimensional vector.
-///
-/// SIMD vector types are used for storage on supported platforms for better
-/// performance than the [`Vec3`] type.
+/// A 3-dimensional vector with SIMD support.
///
-/// It is possible to convert between [`Vec3`] and [`Vec3A`] types using [`From`]
-/// or [`Into`] trait implementations.
+/// This type is 16 byte aligned. A SIMD vector type is used for storage on supported platforms for
+/// better performance than the `Vec3` type.
///
-/// This type is 16 byte aligned.
+/// It is possible to convert between `Vec3` and `Vec3A` types using `From` trait implementations.
#[derive(Clone, Copy, PartialEq)]
#[cfg_attr(not(target_arch = "spirv"), repr(align(16)))]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
@@ -43,37 +43,25 @@ impl Vec3A {
/// All negative ones.
pub const NEG_ONE: Self = Self::splat(-1.0);
- /// All `f32::MIN`.
- pub const MIN: Self = Self::splat(f32::MIN);
-
- /// All `f32::MAX`.
- pub const MAX: Self = Self::splat(f32::MAX);
-
- /// All `f32::NAN`.
+ /// All NAN.
pub const NAN: Self = Self::splat(f32::NAN);
- /// All `f32::INFINITY`.
- pub const INFINITY: Self = Self::splat(f32::INFINITY);
-
- /// All `f32::NEG_INFINITY`.
- pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
-
- /// A unit vector pointing along the positive X axis.
+ /// A unit-length vector pointing along the positive X axis.
pub const X: Self = Self::new(1.0, 0.0, 0.0);
- /// A unit vector pointing along the positive Y axis.
+ /// A unit-length vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0.0, 1.0, 0.0);
- /// A unit vector pointing along the positive Z axis.
+ /// A unit-length vector pointing along the positive Z axis.
pub const Z: Self = Self::new(0.0, 0.0, 1.0);
- /// A unit vector pointing along the negative X axis.
+ /// A unit-length vector pointing along the negative X axis.
pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
- /// A unit vector pointing along the negative Y axis.
+ /// A unit-length vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
- /// A unit vector pointing along the negative Z axis.
+ /// A unit-length vector pointing along the negative Z axis.
pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
/// The unit axes.
@@ -81,14 +69,12 @@ impl Vec3A {
/// Creates a new vector.
#[inline(always)]
- #[must_use]
pub const fn new(x: f32, y: f32, z: f32) -> Self {
Self { x, y, z }
}
/// Creates a vector with all elements set to `v`.
#[inline]
- #[must_use]
pub const fn splat(v: f32) -> Self {
Self { x: v, y: v, z: v }
}
@@ -99,25 +85,22 @@ impl Vec3A {
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
- #[must_use]
pub fn select(mask: BVec3A, if_true: Self, if_false: Self) -> Self {
Self {
- x: if mask.test(0) { if_true.x } else { if_false.x },
- y: if mask.test(1) { if_true.y } else { if_false.y },
- z: if mask.test(2) { if_true.z } else { if_false.z },
+ x: if mask.x != 0 { if_true.x } else { if_false.x },
+ y: if mask.y != 0 { if_true.y } else { if_false.y },
+ z: if mask.z != 0 { if_true.z } else { if_false.z },
}
}
/// Creates a new vector from an array.
#[inline]
- #[must_use]
pub const fn from_array(a: [f32; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
/// `[x, y, z]`
#[inline]
- #[must_use]
pub const fn to_array(&self) -> [f32; 3] {
[self.x, self.y, self.z]
}
@@ -128,7 +111,6 @@ impl Vec3A {
///
/// Panics if `slice` is less than 3 elements long.
#[inline]
- #[must_use]
pub const fn from_slice(slice: &[f32]) -> Self {
Self::new(slice[0], slice[1], slice[2])
}
@@ -148,7 +130,6 @@ impl Vec3A {
/// Internal method for creating a 3D vector from a 4D vector, discarding `w`.
#[allow(dead_code)]
#[inline]
- #[must_use]
pub(crate) fn from_vec4(v: Vec4) -> Self {
Self {
x: v.x,
@@ -159,16 +140,14 @@ impl Vec3A {
/// Creates a 4D vector from `self` and the given `w` value.
#[inline]
- #[must_use]
pub fn extend(self, w: f32) -> Vec4 {
Vec4::new(self.x, self.y, self.z, w)
}
/// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`.
///
- /// Truncation may also be performed by using [`self.xy()`][crate::swizzles::Vec3Swizzles::xy()].
+ /// Truncation may also be performed by using `self.xy()` or `Vec2::from()`.
#[inline]
- #[must_use]
pub fn truncate(self) -> Vec2 {
use crate::swizzles::Vec3Swizzles;
self.xy()
@@ -176,21 +155,18 @@ impl Vec3A {
/// Computes the dot product of `self` and `rhs`.
#[inline]
- #[must_use]
pub fn dot(self, rhs: Self) -> f32 {
(self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
- #[must_use]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self::splat(self.dot(rhs))
}
/// Computes the cross product of `self` and `rhs`.
#[inline]
- #[must_use]
pub fn cross(self, rhs: Self) -> Self {
Self {
x: self.y * rhs.z - rhs.y * self.z,
@@ -203,7 +179,6 @@ impl Vec3A {
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
- #[must_use]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
@@ -216,7 +191,6 @@ impl Vec3A {
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
- #[must_use]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
@@ -233,7 +207,6 @@ impl Vec3A {
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
- #[must_use]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
@@ -243,7 +216,6 @@ impl Vec3A {
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
- #[must_use]
pub fn min_element(self) -> f32 {
self.x.min(self.y.min(self.z))
}
@@ -252,7 +224,6 @@ impl Vec3A {
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
- #[must_use]
pub fn max_element(self) -> f32 {
self.x.max(self.y.max(self.z))
}
@@ -263,7 +234,6 @@ impl Vec3A {
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmpeq(self, rhs: Self) -> BVec3A {
BVec3A::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z))
}
@@ -274,7 +244,6 @@ impl Vec3A {
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmpne(self, rhs: Self) -> BVec3A {
BVec3A::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z))
}
@@ -285,7 +254,6 @@ impl Vec3A {
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmpge(self, rhs: Self) -> BVec3A {
BVec3A::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z))
}
@@ -296,7 +264,6 @@ impl Vec3A {
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmpgt(self, rhs: Self) -> BVec3A {
BVec3A::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z))
}
@@ -307,7 +274,6 @@ impl Vec3A {
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmple(self, rhs: Self) -> BVec3A {
BVec3A::new(self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z))
}
@@ -318,19 +284,17 @@ impl Vec3A {
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmplt(self, rhs: Self) -> BVec3A {
BVec3A::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z))
}
/// Returns a vector containing the absolute value of each element of `self`.
#[inline]
- #[must_use]
pub fn abs(self) -> Self {
Self {
- x: math::abs(self.x),
- y: math::abs(self.y),
- z: math::abs(self.z),
+ x: self.x.abs(),
+ y: self.y.abs(),
+ z: self.z.abs(),
}
}
@@ -340,23 +304,21 @@ impl Vec3A {
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
#[inline]
- #[must_use]
pub fn signum(self) -> Self {
Self {
- x: math::signum(self.x),
- y: math::signum(self.y),
- z: math::signum(self.z),
+ x: self.x.signum(),
+ y: self.y.signum(),
+ z: self.z.signum(),
}
}
/// Returns a vector with signs of `rhs` and the magnitudes of `self`.
#[inline]
- #[must_use]
pub fn copysign(self, rhs: Self) -> Self {
Self {
- x: math::copysign(self.x, rhs.x),
- y: math::copysign(self.y, rhs.y),
- z: math::copysign(self.z, rhs.z),
+ x: self.x.copysign(rhs.x),
+ y: self.y.copysign(rhs.y),
+ z: self.z.copysign(rhs.z),
}
}
@@ -365,7 +327,6 @@ impl Vec3A {
/// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes
/// into the first lowest bit, element `y` into the second, etc.
#[inline]
- #[must_use]
pub fn is_negative_bitmask(self) -> u32 {
(self.x.is_sign_negative() as u32)
| (self.y.is_sign_negative() as u32) << 1
@@ -375,14 +336,12 @@ impl Vec3A {
/// Returns `true` if, and only if, all elements are finite. If any element is either
/// `NaN`, positive or negative infinity, this will return `false`.
#[inline]
- #[must_use]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
- #[must_use]
pub fn is_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan() || self.z.is_nan()
}
@@ -391,7 +350,6 @@ impl Vec3A {
///
/// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
#[inline]
- #[must_use]
pub fn is_nan_mask(self) -> BVec3A {
BVec3A::new(self.x.is_nan(), self.y.is_nan(), self.z.is_nan())
}
@@ -399,9 +357,8 @@ impl Vec3A {
/// Computes the length of `self`.
#[doc(alias = "magnitude")]
#[inline]
- #[must_use]
pub fn length(self) -> f32 {
- math::sqrt(self.dot(self))
+ self.dot(self).sqrt()
}
/// Computes the squared length of `self`.
@@ -409,7 +366,6 @@ impl Vec3A {
/// This is faster than `length()` as it avoids a square root operation.
#[doc(alias = "magnitude2")]
#[inline]
- #[must_use]
pub fn length_squared(self) -> f32 {
self.dot(self)
}
@@ -418,60 +374,33 @@ impl Vec3A {
///
/// For valid results, `self` must _not_ be of length zero.
#[inline]
- #[must_use]
pub fn length_recip(self) -> f32 {
self.length().recip()
}
/// Computes the Euclidean distance between two points in space.
#[inline]
- #[must_use]
pub fn distance(self, rhs: Self) -> f32 {
(self - rhs).length()
}
/// Compute the squared euclidean distance between two points in space.
#[inline]
- #[must_use]
pub fn distance_squared(self, rhs: Self) -> f32 {
(self - rhs).length_squared()
}
- /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
- #[inline]
- #[must_use]
- pub fn div_euclid(self, rhs: Self) -> Self {
- Self::new(
- math::div_euclid(self.x, rhs.x),
- math::div_euclid(self.y, rhs.y),
- math::div_euclid(self.z, rhs.z),
- )
- }
-
- /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
- ///
- /// [Euclidean division]: f32::rem_euclid
- #[inline]
- #[must_use]
- pub fn rem_euclid(self, rhs: Self) -> Self {
- Self::new(
- math::rem_euclid(self.x, rhs.x),
- math::rem_euclid(self.y, rhs.y),
- math::rem_euclid(self.z, rhs.z),
- )
- }
-
/// Returns `self` normalized to length 1.0.
///
/// For valid results, `self` must _not_ be of length zero, nor very close to zero.
///
- /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
+ /// See also [`Self::try_normalize`] and [`Self::normalize_or_zero`].
///
/// Panics
///
/// Will panic if `self` is zero length when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn normalize(self) -> Self {
#[allow(clippy::let_and_return)]
let normalized = self.mul(self.length_recip());
@@ -484,9 +413,9 @@ impl Vec3A {
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be `None`.
///
- /// See also [`Self::normalize_or_zero()`].
- #[inline]
+ /// See also [`Self::normalize_or_zero`].
#[must_use]
+ #[inline]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
@@ -501,9 +430,9 @@ impl Vec3A {
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be zero.
///
- /// See also [`Self::try_normalize()`].
- #[inline]
+ /// See also [`Self::try_normalize`].
#[must_use]
+ #[inline]
pub fn normalize_or_zero(self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
@@ -517,10 +446,9 @@ impl Vec3A {
///
/// Uses a precision threshold of `1e-6`.
#[inline]
- #[must_use]
pub fn is_normalized(self) -> bool {
// TODO: do something with epsilon
- math::abs(self.length_squared() - 1.0) <= 1e-4
+ (self.length_squared() - 1.0).abs() <= 1e-4
}
/// Returns the vector projection of `self` onto `rhs`.
@@ -530,8 +458,8 @@ impl Vec3A {
/// # Panics
///
/// Will panic if `rhs` is zero length when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
@@ -548,8 +476,8 @@ impl Vec3A {
/// # Panics
///
/// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
@@ -561,8 +489,8 @@ impl Vec3A {
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
@@ -578,8 +506,8 @@ impl Vec3A {
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
@@ -587,48 +515,33 @@ impl Vec3A {
/// Returns a vector containing the nearest integer to a number for each element of `self`.
/// Round half-way cases away from 0.0.
#[inline]
- #[must_use]
pub fn round(self) -> Self {
Self {
- x: math::round(self.x),
- y: math::round(self.y),
- z: math::round(self.z),
+ x: self.x.round(),
+ y: self.y.round(),
+ z: self.z.round(),
}
}
/// Returns a vector containing the largest integer less than or equal to a number for each
/// element of `self`.
#[inline]
- #[must_use]
pub fn floor(self) -> Self {
Self {
- x: math::floor(self.x),
- y: math::floor(self.y),
- z: math::floor(self.z),
+ x: self.x.floor(),
+ y: self.y.floor(),
+ z: self.z.floor(),
}
}
/// Returns a vector containing the smallest integer greater than or equal to a number for
/// each element of `self`.
#[inline]
- #[must_use]
pub fn ceil(self) -> Self {
Self {
- x: math::ceil(self.x),
- y: math::ceil(self.y),
- z: math::ceil(self.z),
- }
- }
-
- /// Returns a vector containing the integer part each element of `self`. This means numbers are
- /// always truncated towards zero.
- #[inline]
- #[must_use]
- pub fn trunc(self) -> Self {
- Self {
- x: math::trunc(self.x),
- y: math::trunc(self.y),
- z: math::trunc(self.z),
+ x: self.x.ceil(),
+ y: self.y.ceil(),
+ z: self.z.ceil(),
}
}
@@ -637,7 +550,6 @@ impl Vec3A {
///
/// Note that this is fast but not precise for large numbers.
#[inline]
- #[must_use]
pub fn fract(self) -> Self {
self - self.floor()
}
@@ -645,30 +557,23 @@ impl Vec3A {
/// Returns a vector containing `e^self` (the exponential function) for each element of
/// `self`.
#[inline]
- #[must_use]
pub fn exp(self) -> Self {
- Self::new(math::exp(self.x), math::exp(self.y), math::exp(self.z))
+ Self::new(self.x.exp(), self.y.exp(), self.z.exp())
}
/// Returns a vector containing each element of `self` raised to the power of `n`.
#[inline]
- #[must_use]
pub fn powf(self, n: f32) -> Self {
- Self::new(
- math::powf(self.x, n),
- math::powf(self.y, n),
- math::powf(self.z, n),
- )
+ Self::new(self.x.powf(n), self.y.powf(n), self.z.powf(n))
}
/// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
#[inline]
- #[must_use]
pub fn recip(self) -> Self {
Self {
- x: 1.0 / self.x,
- y: 1.0 / self.y,
- z: 1.0 / self.z,
+ x: self.x.recip(),
+ y: self.y.recip(),
+ z: self.z.recip(),
}
}
@@ -679,7 +584,6 @@ impl Vec3A {
/// extrapolated.
#[doc(alias = "mix")]
#[inline]
- #[must_use]
pub fn lerp(self, rhs: Self, s: f32) -> Self {
self + ((rhs - self) * s)
}
@@ -694,7 +598,6 @@ impl Vec3A {
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
- #[must_use]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
@@ -705,38 +608,33 @@ impl Vec3A {
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
- #[must_use]
pub fn clamp_length(self, min: f32, max: f32) -> Self {
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
- min * (self / math::sqrt(length_sq))
+ self * (length_sq.sqrt().recip() * min)
} else if length_sq > max * max {
- max * (self / math::sqrt(length_sq))
+ self * (length_sq.sqrt().recip() * max)
} else {
self
}
}
/// Returns a vector with a length no more than `max`
- #[inline]
- #[must_use]
pub fn clamp_length_max(self, max: f32) -> Self {
let length_sq = self.length_squared();
if length_sq > max * max {
- max * (self / math::sqrt(length_sq))
+ self * (length_sq.sqrt().recip() * max)
} else {
self
}
}
/// Returns a vector with a length no less than `min`
- #[inline]
- #[must_use]
pub fn clamp_length_min(self, min: f32) -> Self {
let length_sq = self.length_squared();
if length_sq < min * min {
- min * (self / math::sqrt(length_sq))
+ self * (length_sq.sqrt().recip() * min)
} else {
self
}
@@ -750,74 +648,74 @@ impl Vec3A {
/// and will be heavily dependant on designing algorithms with specific target hardware in
/// mind.
#[inline]
- #[must_use]
pub fn mul_add(self, a: Self, b: Self) -> Self {
Self::new(
- math::mul_add(self.x, a.x, b.x),
- math::mul_add(self.y, a.y, b.y),
- math::mul_add(self.z, a.z, b.z),
+ self.x.mul_add(a.x, b.x),
+ self.y.mul_add(a.y, b.y),
+ self.z.mul_add(a.z, b.z),
)
}
/// Returns the angle (in radians) between two vectors.
///
- /// The inputs do not need to be unit vectors however they must be non-zero.
+ /// The input vectors do not need to be unit length however they must be non-zero.
#[inline]
- #[must_use]
pub fn angle_between(self, rhs: Self) -> f32 {
- math::acos_approx(
- self.dot(rhs)
- .div(math::sqrt(self.length_squared().mul(rhs.length_squared()))),
- )
+ use crate::FloatEx;
+ self.dot(rhs)
+ .div(self.length_squared().mul(rhs.length_squared()).sqrt())
+ .acos_approx()
}
/// Returns some vector that is orthogonal to the given one.
///
/// The input vector must be finite and non-zero.
///
- /// The output vector is not necessarily unit length. For that use
- /// [`Self::any_orthonormal_vector()`] instead.
+ /// The output vector is not necessarily unit-length.
+ /// For that use [`Self::any_orthonormal_vector`] instead.
#[inline]
- #[must_use]
pub fn any_orthogonal_vector(&self) -> Self {
// This can probably be optimized
- if math::abs(self.x) > math::abs(self.y) {
+ if self.x.abs() > self.y.abs() {
Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y)
} else {
Self::new(0.0, self.z, -self.y) // self.cross(Self::X)
}
}
- /// Returns any unit vector that is orthogonal to the given one.
- ///
- /// The input vector must be unit length.
+ /// Returns any unit-length vector that is orthogonal to the given one.
+ /// The input vector must be finite and non-zero.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
- #[must_use]
pub fn any_orthonormal_vector(&self) -> Self {
glam_assert!(self.is_normalized());
// From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
- let sign = math::signum(self.z);
+ #[cfg(feature = "std")]
+ let sign = (1.0_f32).copysign(self.z);
+ #[cfg(not(feature = "std"))]
+ let sign = self.z.signum();
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
Self::new(b, sign + self.y * self.y * a, -self.y)
}
- /// Given a unit vector return two other vectors that together form an orthonormal
- /// basis. That is, all three vectors are orthogonal to each other and are normalized.
+ /// Given a unit-length vector return two other vectors that together form an orthonormal
+ /// basis. That is, all three vectors are orthogonal to each other and are normalized.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
- #[must_use]
pub fn any_orthonormal_pair(&self) -> (Self, Self) {
glam_assert!(self.is_normalized());
// From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
- let sign = math::signum(self.z);
+ #[cfg(feature = "std")]
+ let sign = (1.0_f32).copysign(self.z);
+ #[cfg(not(feature = "std"))]
+ let sign = self.z.signum();
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
(
@@ -828,52 +726,21 @@ impl Vec3A {
/// Casts all elements of `self` to `f64`.
#[inline]
- #[must_use]
pub fn as_dvec3(&self) -> crate::DVec3 {
crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
}
- /// Casts all elements of `self` to `i16`.
- #[inline]
- #[must_use]
- pub fn as_i16vec3(&self) -> crate::I16Vec3 {
- crate::I16Vec3::new(self.x as i16, self.y as i16, self.z as i16)
- }
-
- /// Casts all elements of `self` to `u16`.
- #[inline]
- #[must_use]
- pub fn as_u16vec3(&self) -> crate::U16Vec3 {
- crate::U16Vec3::new(self.x as u16, self.y as u16, self.z as u16)
- }
-
/// Casts all elements of `self` to `i32`.
#[inline]
- #[must_use]
pub fn as_ivec3(&self) -> crate::IVec3 {
crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
}
/// Casts all elements of `self` to `u32`.
#[inline]
- #[must_use]
pub fn as_uvec3(&self) -> crate::UVec3 {
crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
}
-
- /// Casts all elements of `self` to `i64`.
- #[inline]
- #[must_use]
- pub fn as_i64vec3(&self) -> crate::I64Vec3 {
- crate::I64Vec3::new(self.x as i64, self.y as i64, self.z as i64)
- }
-
- /// Casts all elements of `self` to `u64`.
- #[inline]
- #[must_use]
- pub fn as_u64vec3(&self) -> crate::U64Vec3 {
- crate::U64Vec3::new(self.x as u64, self.y as u64, self.z as u64)
- }
}
impl Default for Vec3A {
@@ -1300,7 +1167,7 @@ impl From<Vec3> for Vec3A {
}
impl From<Vec4> for Vec3A {
- /// Creates a [`Vec3A`] from the `x`, `y` and `z` elements of `self` discarding `w`.
+ /// Creates a `Vec3A` from the `x`, `y` and `z` elements of `self` discarding `w`.
///
/// On architectures where SIMD is supported such as SSE2 on `x86_64` this conversion is a noop.
#[inline]