aboutsummaryrefslogtreecommitdiff
path: root/ext/ipp/sources/ippcp/src/pcpgfpmethod_256.c
blob: db19629ab1c8b1e64604d19f8536af8eb4f93218 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*############################################################################
  # Copyright 1999-2018 Intel Corporation
  #
  # Licensed under the Apache License, Version 2.0 (the "License");
  # you may not use this file except in compliance with the License.
  # You may obtain a copy of the License at
  #
  #     http://www.apache.org/licenses/LICENSE-2.0
  #
  # Unless required by applicable law or agreed to in writing, software
  # distributed under the License is distributed on an "AS IS" BASIS,
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  # See the License for the specific language governing permissions and
  # limitations under the License.
  ############################################################################*/

/*
//     Intel(R) Performance Primitives. Cryptography Primitives.
//     GF(p) methods
//
*/
#include "owndefs.h"
#include "owncp.h"

#include "pcpbnumisc.h"
#include "pcpgfpstuff.h"
#include "pcpgfpmethod.h"
#include "pcpecprime.h"

#if(_IPP32E >= _IPP32E_M7)

/* arithmetic over arbitrary 256r-bit modulus */
BNU_CHUNK_T* gf256_add(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, const BNU_CHUNK_T* pModulus);
BNU_CHUNK_T* gf256_sub(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, const BNU_CHUNK_T* pModulus);
BNU_CHUNK_T* gf256_neg(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pModulus);
BNU_CHUNK_T* gf256_mulm(BNU_CHUNK_T* pR,const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, const BNU_CHUNK_T* pModulus, BNU_CHUNK_T  m0);
BNU_CHUNK_T* gf256_sqrm(BNU_CHUNK_T* pR,const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pModulus, BNU_CHUNK_T  m0);
BNU_CHUNK_T* gf256_div2(BNU_CHUNK_T* pR,const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pModulus);

#define OPERAND_BITSIZE (256)
#define LEN_P256        (BITS_BNU_CHUNK(OPERAND_BITSIZE))

static BNU_CHUNK_T* p256_add(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
{
   return gf256_add(pR, pA, pB, GFP_MODULUS(pGFE));
}

static BNU_CHUNK_T* p256_sub(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
{
   return gf256_sub(pR, pA, pB, GFP_MODULUS(pGFE));
}

static BNU_CHUNK_T* p256_neg(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
   return gf256_neg(pR, pA, GFP_MODULUS(pGFE));
}

static BNU_CHUNK_T* p256_div_by_2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
   return gf256_div2(pR, pA, GFP_MODULUS(pGFE));
}

static BNU_CHUNK_T* p256_mul_by_2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
   return gf256_add(pR, pA, pA, GFP_MODULUS(pGFE));
}

static BNU_CHUNK_T* p256_mul_by_3(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
   BNU_CHUNK_T tmp[LEN_P256];
   gf256_add(tmp, pA, pA, GFP_MODULUS(pGFE));
   return gf256_add(pR, tmp, pA, GFP_MODULUS(pGFE));
}

static BNU_CHUNK_T* p256_mul_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
{
   return gf256_mulm(pR, pA, pB, GFP_MODULUS(pGFE), GFP_MNT_FACTOR(pGFE));
}

static BNU_CHUNK_T* p256_sqr_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
   return gf256_sqrm(pR, pA, GFP_MODULUS(pGFE), GFP_MNT_FACTOR(pGFE));
}


static BNU_CHUNK_T* p256_to_mont(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
   return gf256_mulm(pR, pA, GFP_MNT_RR(pGFE), GFP_MODULUS(pGFE), GFP_MNT_FACTOR(pGFE));
}

static BNU_CHUNK_T one[] = {1,0,0,0};

static BNU_CHUNK_T* p256_mont_back(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
   return gf256_mulm(pR, pA, one, GFP_MODULUS(pGFE), GFP_MNT_FACTOR(pGFE));
}

/* return specific gf p256 arith methods */
static gsModMethod* gsArithGF_p256(void)
{
   static gsModMethod m = {
      p256_to_mont,
      p256_mont_back,
      p256_mul_montl,
      p256_sqr_montl,
      NULL,
      p256_add,
      p256_sub,
      p256_neg,
      p256_div_by_2,
      p256_mul_by_2,
      p256_mul_by_3,
   };
   return &m;
}
#endif /* _IPP32E >= _IPP32E_M7 */


IPPFUN( const IppsGFpMethod*, ippsGFpMethod_p256, (void) )
{
   static IppsGFpMethod method = {
      cpID_Prime,
      256,
      NULL,
      NULL
   };

   #if(_IPP32E >= _IPP32E_M7)
   method.arith = gsArithGF_p256();
   #else
   method.arith = gsArithGFp();
   #endif
   return &method;
}

IPPFUN( const IppsGFpMethod*, ippsGFpMethod_p256bn, (void) )
{
   static IppsGFpMethod method = {
      cpID_Prime,
      256,
      tpmBN_p256p_p,
      NULL
   };

   #if(_IPP32E >= _IPP32E_M7)
   method.arith = gsArithGF_p256();
   #else
   method.arith = gsArithGFp();
   #endif
   return &method;
}

#undef LEN_P256
#undef OPERAND_BITSIZE