summaryrefslogtreecommitdiff
path: root/pathops/SkPathOpsTypes.h
diff options
context:
space:
mode:
Diffstat (limited to 'pathops/SkPathOpsTypes.h')
-rw-r--r--pathops/SkPathOpsTypes.h277
1 files changed, 277 insertions, 0 deletions
diff --git a/pathops/SkPathOpsTypes.h b/pathops/SkPathOpsTypes.h
new file mode 100644
index 00000000..6158f135
--- /dev/null
+++ b/pathops/SkPathOpsTypes.h
@@ -0,0 +1,277 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#ifndef SkPathOpsTypes_DEFINED
+#define SkPathOpsTypes_DEFINED
+
+#include <float.h> // for FLT_EPSILON
+#include <math.h> // for fabs, sqrt
+
+#include "SkFloatingPoint.h"
+#include "SkPath.h"
+#include "SkPathOps.h"
+#include "SkPathOpsDebug.h"
+#include "SkScalar.h"
+
+enum SkPathOpsMask {
+ kWinding_PathOpsMask = -1,
+ kNo_PathOpsMask = 0,
+ kEvenOdd_PathOpsMask = 1
+};
+
+// Use Almost Equal when comparing coordinates. Use epsilon to compare T values.
+bool AlmostEqualUlps(float a, float b);
+inline bool AlmostEqualUlps(double a, double b) {
+ return AlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
+}
+
+bool RoughlyEqualUlps(float a, float b);
+inline bool RoughlyEqualUlps(double a, double b) {
+ return RoughlyEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
+}
+
+bool AlmostBetweenUlps(float a, float b, float c);
+inline bool AlmostBetweenUlps(double a, double b, double c) {
+ return AlmostBetweenUlps(SkDoubleToScalar(a), SkDoubleToScalar(b), SkDoubleToScalar(c));
+}
+
+int UlpsDistance(float a, float b);
+inline int UlpsDistance(double a, double b) {
+ return UlpsDistance(SkDoubleToScalar(a), SkDoubleToScalar(b));
+}
+
+// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23)
+// DBL_EPSILON == 2.22045e-16
+const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
+const double FLT_EPSILON_HALF = FLT_EPSILON / 2;
+const double FLT_EPSILON_DOUBLE = FLT_EPSILON * 2;
+const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
+const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON);
+const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
+const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // FIXME: tune -- allow a few bits of error
+const double DBL_EPSILON_SUBDIVIDE_ERR = DBL_EPSILON * 16;
+const double ROUGH_EPSILON = FLT_EPSILON * 64;
+const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256;
+
+inline bool approximately_zero(double x) {
+ return fabs(x) < FLT_EPSILON;
+}
+
+inline bool precisely_zero(double x) {
+ return fabs(x) < DBL_EPSILON_ERR;
+}
+
+inline bool precisely_subdivide_zero(double x) {
+ return fabs(x) < DBL_EPSILON_SUBDIVIDE_ERR;
+}
+
+inline bool approximately_zero(float x) {
+ return fabs(x) < FLT_EPSILON;
+}
+
+inline bool approximately_zero_cubed(double x) {
+ return fabs(x) < FLT_EPSILON_CUBED;
+}
+
+inline bool approximately_zero_half(double x) {
+ return fabs(x) < FLT_EPSILON_HALF;
+}
+
+inline bool approximately_zero_double(double x) {
+ return fabs(x) < FLT_EPSILON_DOUBLE;
+}
+
+inline bool approximately_zero_squared(double x) {
+ return fabs(x) < FLT_EPSILON_SQUARED;
+}
+
+inline bool approximately_zero_sqrt(double x) {
+ return fabs(x) < FLT_EPSILON_SQRT;
+}
+
+inline bool roughly_zero(double x) {
+ return fabs(x) < ROUGH_EPSILON;
+}
+
+inline bool approximately_zero_inverse(double x) {
+ return fabs(x) > FLT_EPSILON_INVERSE;
+}
+
+// OPTIMIZATION: if called multiple times with the same denom, we want to pass 1/y instead
+inline bool approximately_zero_when_compared_to(double x, double y) {
+ return x == 0 || fabs(x / y) < FLT_EPSILON;
+}
+
+// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
+// AlmostEqualUlps instead.
+inline bool approximately_equal(double x, double y) {
+ return approximately_zero(x - y);
+}
+
+inline bool precisely_equal(double x, double y) {
+ return precisely_zero(x - y);
+}
+
+inline bool precisely_subdivide_equal(double x, double y) {
+ return precisely_subdivide_zero(x - y);
+}
+
+inline bool approximately_equal_half(double x, double y) {
+ return approximately_zero_half(x - y);
+}
+
+inline bool approximately_equal_double(double x, double y) {
+ return approximately_zero_double(x - y);
+}
+
+inline bool approximately_equal_squared(double x, double y) {
+ return approximately_equal(x, y);
+}
+
+inline bool approximately_greater(double x, double y) {
+ return x - FLT_EPSILON >= y;
+}
+
+inline bool approximately_greater_or_equal(double x, double y) {
+ return x + FLT_EPSILON > y;
+}
+
+inline bool approximately_lesser(double x, double y) {
+ return x + FLT_EPSILON <= y;
+}
+
+inline bool approximately_lesser_or_equal(double x, double y) {
+ return x - FLT_EPSILON < y;
+}
+
+inline bool approximately_greater_than_one(double x) {
+ return x > 1 - FLT_EPSILON;
+}
+
+inline bool precisely_greater_than_one(double x) {
+ return x > 1 - DBL_EPSILON_ERR;
+}
+
+inline bool approximately_less_than_zero(double x) {
+ return x < FLT_EPSILON;
+}
+
+inline bool precisely_less_than_zero(double x) {
+ return x < DBL_EPSILON_ERR;
+}
+
+inline bool approximately_negative(double x) {
+ return x < FLT_EPSILON;
+}
+
+inline bool precisely_negative(double x) {
+ return x < DBL_EPSILON_ERR;
+}
+
+inline bool approximately_one_or_less(double x) {
+ return x < 1 + FLT_EPSILON;
+}
+
+inline bool approximately_positive(double x) {
+ return x > -FLT_EPSILON;
+}
+
+inline bool approximately_positive_squared(double x) {
+ return x > -(FLT_EPSILON_SQUARED);
+}
+
+inline bool approximately_zero_or_more(double x) {
+ return x > -FLT_EPSILON;
+}
+
+inline bool approximately_between(double a, double b, double c) {
+ return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
+ : approximately_negative(b - a) && approximately_negative(c - b);
+}
+
+inline bool precisely_between(double a, double b, double c) {
+ return a <= c ? precisely_negative(a - b) && precisely_negative(b - c)
+ : precisely_negative(b - a) && precisely_negative(c - b);
+}
+
+// returns true if (a <= b <= c) || (a >= b >= c)
+inline bool between(double a, double b, double c) {
+ SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0));
+ return (a - b) * (c - b) <= 0;
+}
+
+inline bool more_roughly_equal(double x, double y) {
+ return fabs(x - y) < MORE_ROUGH_EPSILON;
+}
+
+inline bool roughly_equal(double x, double y) {
+ return fabs(x - y) < ROUGH_EPSILON;
+}
+
+struct SkDPoint;
+struct SkDVector;
+struct SkDLine;
+struct SkDQuad;
+struct SkDTriangle;
+struct SkDCubic;
+struct SkDRect;
+
+inline SkPath::Verb SkPathOpsPointsToVerb(int points) {
+ int verb = (1 << points) >> 1;
+#ifdef SK_DEBUG
+ switch (points) {
+ case 0: SkASSERT(SkPath::kMove_Verb == verb); break;
+ case 1: SkASSERT(SkPath::kLine_Verb == verb); break;
+ case 2: SkASSERT(SkPath::kQuad_Verb == verb); break;
+ case 3: SkASSERT(SkPath::kCubic_Verb == verb); break;
+ default: SkASSERT(!"should not be here");
+ }
+#endif
+ return (SkPath::Verb)verb;
+}
+
+inline int SkPathOpsVerbToPoints(SkPath::Verb verb) {
+ int points = (int) verb - ((int) verb >> 2);
+#ifdef SK_DEBUG
+ switch (verb) {
+ case SkPath::kLine_Verb: SkASSERT(1 == points); break;
+ case SkPath::kQuad_Verb: SkASSERT(2 == points); break;
+ case SkPath::kCubic_Verb: SkASSERT(3 == points); break;
+ default: SkASSERT(!"should not get here");
+ }
+#endif
+ return points;
+}
+
+inline double SkDInterp(double A, double B, double t) {
+ return A + (B - A) * t;
+}
+
+double SkDCubeRoot(double x);
+
+/* Returns -1 if negative, 0 if zero, 1 if positive
+*/
+inline int SkDSign(double x) {
+ return (x > 0) - (x < 0);
+}
+
+/* Returns 0 if negative, 1 if zero, 2 if positive
+*/
+inline int SKDSide(double x) {
+ return (x > 0) + (x >= 0);
+}
+
+/* Returns 1 if negative, 2 if zero, 4 if positive
+*/
+inline int SkDSideBit(double x) {
+ return 1 << SKDSide(x);
+}
+
+inline double SkPinT(double t) {
+ return precisely_less_than_zero(t) ? 0 : precisely_greater_than_one(t) ? 1 : t;
+}
+
+#endif