summaryrefslogtreecommitdiff
path: root/pathops/SkDCubicLineIntersection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'pathops/SkDCubicLineIntersection.cpp')
-rw-r--r--pathops/SkDCubicLineIntersection.cpp327
1 files changed, 327 insertions, 0 deletions
diff --git a/pathops/SkDCubicLineIntersection.cpp b/pathops/SkDCubicLineIntersection.cpp
new file mode 100644
index 00000000..a891abec
--- /dev/null
+++ b/pathops/SkDCubicLineIntersection.cpp
@@ -0,0 +1,327 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "SkIntersections.h"
+#include "SkPathOpsCubic.h"
+#include "SkPathOpsLine.h"
+
+/*
+Find the interection of a line and cubic by solving for valid t values.
+
+Analogous to line-quadratic intersection, solve line-cubic intersection by
+representing the cubic as:
+ x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
+ y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
+and the line as:
+ y = i*x + j (if the line is more horizontal)
+or:
+ x = i*y + j (if the line is more vertical)
+
+Then using Mathematica, solve for the values of t where the cubic intersects the
+line:
+
+ (in) Resultant[
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
+ e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
+ (out) -e + j +
+ 3 e t - 3 f t -
+ 3 e t^2 + 6 f t^2 - 3 g t^2 +
+ e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
+ i ( a -
+ 3 a t + 3 b t +
+ 3 a t^2 - 6 b t^2 + 3 c t^2 -
+ a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
+
+if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
+
+ (in) Resultant[
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
+ e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
+ (out) a - j -
+ 3 a t + 3 b t +
+ 3 a t^2 - 6 b t^2 + 3 c t^2 -
+ a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
+ i ( e -
+ 3 e t + 3 f t +
+ 3 e t^2 - 6 f t^2 + 3 g t^2 -
+ e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
+
+Solving this with Mathematica produces an expression with hundreds of terms;
+instead, use Numeric Solutions recipe to solve the cubic.
+
+The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
+ A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
+ B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
+ C = 3*(-(-e + f ) + i*(-a + b ) )
+ D = (-( e ) + i*( a ) + j )
+
+The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
+ A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
+ B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
+ C = 3*( (-a + b ) - i*(-e + f ) )
+ D = ( ( a ) - i*( e ) - j )
+
+For horizontal lines:
+(in) Resultant[
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
+ e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
+(out) e - j -
+ 3 e t + 3 f t +
+ 3 e t^2 - 6 f t^2 + 3 g t^2 -
+ e t^3 + 3 f t^3 - 3 g t^3 + h t^3
+ */
+
+class LineCubicIntersections {
+public:
+ enum PinTPoint {
+ kPointUninitialized,
+ kPointInitialized
+ };
+
+ LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i)
+ : fCubic(c)
+ , fLine(l)
+ , fIntersections(i)
+ , fAllowNear(true) {
+ }
+
+ void allowNear(bool allow) {
+ fAllowNear = allow;
+ }
+
+ // see parallel routine in line quadratic intersections
+ int intersectRay(double roots[3]) {
+ double adj = fLine[1].fX - fLine[0].fX;
+ double opp = fLine[1].fY - fLine[0].fY;
+ SkDCubic r;
+ for (int n = 0; n < 4; ++n) {
+ r[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
+ }
+ double A, B, C, D;
+ SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D);
+ return SkDCubic::RootsValidT(A, B, C, D, roots);
+ }
+
+ int intersect() {
+ addExactEndPoints();
+ double rootVals[3];
+ int roots = intersectRay(rootVals);
+ for (int index = 0; index < roots; ++index) {
+ double cubicT = rootVals[index];
+ double lineT = findLineT(cubicT);
+ SkDPoint pt;
+ if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized)) {
+ #if ONE_OFF_DEBUG
+ SkDPoint cPt = fCubic.ptAtT(cubicT);
+ SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
+ cPt.fX, cPt.fY);
+ #endif
+ fIntersections->insert(cubicT, lineT, pt);
+ }
+ }
+ if (fAllowNear) {
+ addNearEndPoints();
+ }
+ return fIntersections->used();
+ }
+
+ int horizontalIntersect(double axisIntercept, double roots[3]) {
+ double A, B, C, D;
+ SkDCubic::Coefficients(&fCubic[0].fY, &A, &B, &C, &D);
+ D -= axisIntercept;
+ return SkDCubic::RootsValidT(A, B, C, D, roots);
+ }
+
+ int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
+ addExactHorizontalEndPoints(left, right, axisIntercept);
+ double rootVals[3];
+ int roots = horizontalIntersect(axisIntercept, rootVals);
+ for (int index = 0; index < roots; ++index) {
+ double cubicT = rootVals[index];
+ SkDPoint pt = fCubic.ptAtT(cubicT);
+ double lineT = (pt.fX - left) / (right - left);
+ if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
+ fIntersections->insert(cubicT, lineT, pt);
+ }
+ }
+ if (fAllowNear) {
+ addNearHorizontalEndPoints(left, right, axisIntercept);
+ }
+ if (flipped) {
+ fIntersections->flip();
+ }
+ return fIntersections->used();
+ }
+
+ int verticalIntersect(double axisIntercept, double roots[3]) {
+ double A, B, C, D;
+ SkDCubic::Coefficients(&fCubic[0].fX, &A, &B, &C, &D);
+ D -= axisIntercept;
+ return SkDCubic::RootsValidT(A, B, C, D, roots);
+ }
+
+ int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
+ addExactVerticalEndPoints(top, bottom, axisIntercept);
+ double rootVals[3];
+ int roots = verticalIntersect(axisIntercept, rootVals);
+ for (int index = 0; index < roots; ++index) {
+ double cubicT = rootVals[index];
+ SkDPoint pt = fCubic.ptAtT(cubicT);
+ double lineT = (pt.fY - top) / (bottom - top);
+ if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
+ fIntersections->insert(cubicT, lineT, pt);
+ }
+ }
+ if (fAllowNear) {
+ addNearVerticalEndPoints(top, bottom, axisIntercept);
+ }
+ if (flipped) {
+ fIntersections->flip();
+ }
+ return fIntersections->used();
+ }
+
+ protected:
+
+ void addExactEndPoints() {
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) {
+ double lineT = fLine.exactPoint(fCubic[cIndex]);
+ if (lineT < 0) {
+ continue;
+ }
+ double cubicT = (double) (cIndex >> 1);
+ fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
+ }
+ }
+
+ void addNearEndPoints() {
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) {
+ double cubicT = (double) (cIndex >> 1);
+ if (fIntersections->hasT(cubicT)) {
+ continue;
+ }
+ double lineT = fLine.nearPoint(fCubic[cIndex]);
+ if (lineT < 0) {
+ continue;
+ }
+ fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
+ }
+ }
+
+ void addExactHorizontalEndPoints(double left, double right, double y) {
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) {
+ double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y);
+ if (lineT < 0) {
+ continue;
+ }
+ double cubicT = (double) (cIndex >> 1);
+ fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
+ }
+ }
+
+ void addNearHorizontalEndPoints(double left, double right, double y) {
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) {
+ double cubicT = (double) (cIndex >> 1);
+ if (fIntersections->hasT(cubicT)) {
+ continue;
+ }
+ double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y);
+ if (lineT < 0) {
+ continue;
+ }
+ fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
+ }
+ // FIXME: see if line end is nearly on cubic
+ }
+
+ void addExactVerticalEndPoints(double top, double bottom, double x) {
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) {
+ double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x);
+ if (lineT < 0) {
+ continue;
+ }
+ double cubicT = (double) (cIndex >> 1);
+ fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
+ }
+ }
+
+ void addNearVerticalEndPoints(double top, double bottom, double x) {
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) {
+ double cubicT = (double) (cIndex >> 1);
+ if (fIntersections->hasT(cubicT)) {
+ continue;
+ }
+ double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x);
+ if (lineT < 0) {
+ continue;
+ }
+ fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
+ }
+ // FIXME: see if line end is nearly on cubic
+ }
+
+ double findLineT(double t) {
+ SkDPoint xy = fCubic.ptAtT(t);
+ double dx = fLine[1].fX - fLine[0].fX;
+ double dy = fLine[1].fY - fLine[0].fY;
+ if (fabs(dx) > fabs(dy)) {
+ return (xy.fX - fLine[0].fX) / dx;
+ }
+ return (xy.fY - fLine[0].fY) / dy;
+ }
+
+ bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
+ if (!approximately_one_or_less(*lineT)) {
+ return false;
+ }
+ if (!approximately_zero_or_more(*lineT)) {
+ return false;
+ }
+ double cT = *cubicT = SkPinT(*cubicT);
+ double lT = *lineT = SkPinT(*lineT);
+ if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) {
+ *pt = fLine.ptAtT(lT);
+ } else if (ptSet == kPointUninitialized) {
+ *pt = fCubic.ptAtT(cT);
+ }
+ return true;
+ }
+
+private:
+ const SkDCubic& fCubic;
+ const SkDLine& fLine;
+ SkIntersections* fIntersections;
+ bool fAllowNear;
+};
+
+int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
+ bool flipped) {
+ SkDLine line = {{{ left, y }, { right, y }}};
+ LineCubicIntersections c(cubic, line, this);
+ return c.horizontalIntersect(y, left, right, flipped);
+}
+
+int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
+ bool flipped) {
+ SkDLine line = {{{ x, top }, { x, bottom }}};
+ LineCubicIntersections c(cubic, line, this);
+ return c.verticalIntersect(x, top, bottom, flipped);
+}
+
+int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
+ LineCubicIntersections c(cubic, line, this);
+ c.allowNear(fAllowNear);
+ return c.intersect();
+}
+
+int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
+ LineCubicIntersections c(cubic, line, this);
+ fUsed = c.intersectRay(fT[0]);
+ for (int index = 0; index < fUsed; ++index) {
+ fPt[index] = cubic.ptAtT(fT[0][index]);
+ }
+ return fUsed;
+}