summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/stat/regression/SimpleRegression.java
blob: 02bf8f4abd71ea6f8f7c629e0a8da2c3017d5a2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.stat.regression;
import java.io.Serializable;

import org.apache.commons.math3.distribution.TDistribution;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * Estimates an ordinary least squares regression model
 * with one independent variable.
 * <p>
 * <code> y = intercept + slope * x  </code></p>
 * <p>
 * Standard errors for <code>intercept</code> and <code>slope</code> are
 * available as well as ANOVA, r-square and Pearson's r statistics.</p>
 * <p>
 * Observations (x,y pairs) can be added to the model one at a time or they
 * can be provided in a 2-dimensional array.  The observations are not stored
 * in memory, so there is no limit to the number of observations that can be
 * added to the model.</p>
 * <p>
 * <strong>Usage Notes</strong>: <ul>
 * <li> When there are fewer than two observations in the model, or when
 * there is no variation in the x values (i.e. all x values are the same)
 * all statistics return <code>NaN</code>. At least two observations with
 * different x coordinates are required to estimate a bivariate regression
 * model.
 * </li>
 * <li> Getters for the statistics always compute values based on the current
 * set of observations -- i.e., you can get statistics, then add more data
 * and get updated statistics without using a new instance.  There is no
 * "compute" method that updates all statistics.  Each of the getters performs
 * the necessary computations to return the requested statistic.
 * </li>
 * <li> The intercept term may be suppressed by passing {@code false} to
 * the {@link #SimpleRegression(boolean)} constructor.  When the
 * {@code hasIntercept} property is false, the model is estimated without a
 * constant term and {@link #getIntercept()} returns {@code 0}.</li>
 * </ul></p>
 *
 */
public class SimpleRegression implements Serializable, UpdatingMultipleLinearRegression {

    /** Serializable version identifier */
    private static final long serialVersionUID = -3004689053607543335L;

    /** sum of x values */
    private double sumX = 0d;

    /** total variation in x (sum of squared deviations from xbar) */
    private double sumXX = 0d;

    /** sum of y values */
    private double sumY = 0d;

    /** total variation in y (sum of squared deviations from ybar) */
    private double sumYY = 0d;

    /** sum of products */
    private double sumXY = 0d;

    /** number of observations */
    private long n = 0;

    /** mean of accumulated x values, used in updating formulas */
    private double xbar = 0;

    /** mean of accumulated y values, used in updating formulas */
    private double ybar = 0;

    /** include an intercept or not */
    private final boolean hasIntercept;
    // ---------------------Public methods--------------------------------------

    /**
     * Create an empty SimpleRegression instance
     */
    public SimpleRegression() {
        this(true);
    }
    /**
    * Create a SimpleRegression instance, specifying whether or not to estimate
    * an intercept.
    *
    * <p>Use {@code false} to estimate a model with no intercept.  When the
    * {@code hasIntercept} property is false, the model is estimated without a
    * constant term and {@link #getIntercept()} returns {@code 0}.</p>
    *
    * @param includeIntercept whether or not to include an intercept term in
    * the regression model
    */
    public SimpleRegression(boolean includeIntercept) {
        super();
        hasIntercept = includeIntercept;
    }

    /**
     * Adds the observation (x,y) to the regression data set.
     * <p>
     * Uses updating formulas for means and sums of squares defined in
     * "Algorithms for Computing the Sample Variance: Analysis and
     * Recommendations", Chan, T.F., Golub, G.H., and LeVeque, R.J.
     * 1983, American Statistician, vol. 37, pp. 242-247, referenced in
     * Weisberg, S. "Applied Linear Regression". 2nd Ed. 1985.</p>
     *
     *
     * @param x independent variable value
     * @param y dependent variable value
     */
    public void addData(final double x,final double y) {
        if (n == 0) {
            xbar = x;
            ybar = y;
        } else {
            if( hasIntercept ){
                final double fact1 = 1.0 + n;
                final double fact2 = n / (1.0 + n);
                final double dx = x - xbar;
                final double dy = y - ybar;
                sumXX += dx * dx * fact2;
                sumYY += dy * dy * fact2;
                sumXY += dx * dy * fact2;
                xbar += dx / fact1;
                ybar += dy / fact1;
            }
         }
        if( !hasIntercept ){
            sumXX += x * x ;
            sumYY += y * y ;
            sumXY += x * y ;
        }
        sumX += x;
        sumY += y;
        n++;
    }

    /**
     * Appends data from another regression calculation to this one.
     *
     * <p>The mean update formulae are based on a paper written by Philippe
     * P&eacute;bay:
     * <a
     * href="http://prod.sandia.gov/techlib/access-control.cgi/2008/086212.pdf">
     * Formulas for Robust, One-Pass Parallel Computation of Covariances and
     * Arbitrary-Order Statistical Moments</a>, 2008, Technical Report
     * SAND2008-6212, Sandia National Laboratories.</p>
     *
     * @param reg model to append data from
     * @since 3.3
     */
    public void append(SimpleRegression reg) {
        if (n == 0) {
            xbar = reg.xbar;
            ybar = reg.ybar;
            sumXX = reg.sumXX;
            sumYY = reg.sumYY;
            sumXY = reg.sumXY;
        } else {
            if (hasIntercept) {
                final double fact1 = reg.n / (double) (reg.n + n);
                final double fact2 = n * reg.n / (double) (reg.n + n);
                final double dx = reg.xbar - xbar;
                final double dy = reg.ybar - ybar;
                sumXX += reg.sumXX + dx * dx * fact2;
                sumYY += reg.sumYY + dy * dy * fact2;
                sumXY += reg.sumXY + dx * dy * fact2;
                xbar += dx * fact1;
                ybar += dy * fact1;
            }else{
                sumXX += reg.sumXX;
                sumYY += reg.sumYY;
                sumXY += reg.sumXY;
            }
        }
        sumX += reg.sumX;
        sumY += reg.sumY;
        n += reg.n;
    }

    /**
     * Removes the observation (x,y) from the regression data set.
     * <p>
     * Mirrors the addData method.  This method permits the use of
     * SimpleRegression instances in streaming mode where the regression
     * is applied to a sliding "window" of observations, however the caller is
     * responsible for maintaining the set of observations in the window.</p>
     *
     * The method has no effect if there are no points of data (i.e. n=0)
     *
     * @param x independent variable value
     * @param y dependent variable value
     */
    public void removeData(final double x,final double y) {
        if (n > 0) {
            if (hasIntercept) {
                final double fact1 = n - 1.0;
                final double fact2 = n / (n - 1.0);
                final double dx = x - xbar;
                final double dy = y - ybar;
                sumXX -= dx * dx * fact2;
                sumYY -= dy * dy * fact2;
                sumXY -= dx * dy * fact2;
                xbar -= dx / fact1;
                ybar -= dy / fact1;
            } else {
                final double fact1 = n - 1.0;
                sumXX -= x * x;
                sumYY -= y * y;
                sumXY -= x * y;
                xbar -= x / fact1;
                ybar -= y / fact1;
            }
             sumX -= x;
             sumY -= y;
             n--;
        }
    }

    /**
     * Adds the observations represented by the elements in
     * <code>data</code>.
     * <p>
     * <code>(data[0][0],data[0][1])</code> will be the first observation, then
     * <code>(data[1][0],data[1][1])</code>, etc.</p>
     * <p>
     * This method does not replace data that has already been added.  The
     * observations represented by <code>data</code> are added to the existing
     * dataset.</p>
     * <p>
     * To replace all data, use <code>clear()</code> before adding the new
     * data.</p>
     *
     * @param data array of observations to be added
     * @throws ModelSpecificationException if the length of {@code data[i]} is not
     * greater than or equal to 2
     */
    public void addData(final double[][] data) throws ModelSpecificationException {
        for (int i = 0; i < data.length; i++) {
            if( data[i].length < 2 ){
               throw new ModelSpecificationException(LocalizedFormats.INVALID_REGRESSION_OBSERVATION,
                    data[i].length, 2);
            }
            addData(data[i][0], data[i][1]);
        }
    }

    /**
     * Adds one observation to the regression model.
     *
     * @param x the independent variables which form the design matrix
     * @param y the dependent or response variable
     * @throws ModelSpecificationException if the length of {@code x} does not equal
     * the number of independent variables in the model
     */
    public void addObservation(final double[] x,final double y)
    throws ModelSpecificationException {
        if( x == null || x.length == 0 ){
            throw new ModelSpecificationException(LocalizedFormats.INVALID_REGRESSION_OBSERVATION,x!=null?x.length:0, 1);
        }
        addData( x[0], y );
    }

    /**
     * Adds a series of observations to the regression model. The lengths of
     * x and y must be the same and x must be rectangular.
     *
     * @param x a series of observations on the independent variables
     * @param y a series of observations on the dependent variable
     * The length of x and y must be the same
     * @throws ModelSpecificationException if {@code x} is not rectangular, does not match
     * the length of {@code y} or does not contain sufficient data to estimate the model
     */
    public void addObservations(final double[][] x,final double[] y) throws ModelSpecificationException {
        if ((x == null) || (y == null) || (x.length != y.length)) {
            throw new ModelSpecificationException(
                  LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE,
                  (x == null) ? 0 : x.length,
                  (y == null) ? 0 : y.length);
        }
        boolean obsOk=true;
        for( int i = 0 ; i < x.length; i++){
            if( x[i] == null || x[i].length == 0 ){
                obsOk = false;
            }
        }
        if( !obsOk ){
            throw new ModelSpecificationException(
                  LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS,
                  0, 1);
        }
        for( int i = 0 ; i < x.length ; i++){
            addData( x[i][0], y[i] );
        }
    }

    /**
     * Removes observations represented by the elements in <code>data</code>.
      * <p>
     * If the array is larger than the current n, only the first n elements are
     * processed.  This method permits the use of SimpleRegression instances in
     * streaming mode where the regression is applied to a sliding "window" of
     * observations, however the caller is responsible for maintaining the set
     * of observations in the window.</p>
     * <p>
     * To remove all data, use <code>clear()</code>.</p>
     *
     * @param data array of observations to be removed
     */
    public void removeData(double[][] data) {
        for (int i = 0; i < data.length && n > 0; i++) {
            removeData(data[i][0], data[i][1]);
        }
    }

    /**
     * Clears all data from the model.
     */
    public void clear() {
        sumX = 0d;
        sumXX = 0d;
        sumY = 0d;
        sumYY = 0d;
        sumXY = 0d;
        n = 0;
    }

    /**
     * Returns the number of observations that have been added to the model.
     *
     * @return n number of observations that have been added.
     */
    public long getN() {
        return n;
    }

    /**
     * Returns the "predicted" <code>y</code> value associated with the
     * supplied <code>x</code> value,  based on the data that has been
     * added to the model when this method is activated.
     * <p>
     * <code> predict(x) = intercept + slope * x </code></p>
     * <p>
     * <strong>Preconditions</strong>: <ul>
     * <li>At least two observations (with at least two different x values)
     * must have been added before invoking this method. If this method is
     * invoked before a model can be estimated, <code>Double,NaN</code> is
     * returned.
     * </li></ul></p>
     *
     * @param x input <code>x</code> value
     * @return predicted <code>y</code> value
     */
    public double predict(final double x) {
        final double b1 = getSlope();
        if (hasIntercept) {
            return getIntercept(b1) + b1 * x;
        }
        return b1 * x;
    }

    /**
     * Returns the intercept of the estimated regression line, if
     * {@link #hasIntercept()} is true; otherwise 0.
     * <p>
     * The least squares estimate of the intercept is computed using the
     * <a href="http://www.xycoon.com/estimation4.htm">normal equations</a>.
     * The intercept is sometimes denoted b0.</p>
     * <p>
     * <strong>Preconditions</strong>: <ul>
     * <li>At least two observations (with at least two different x values)
     * must have been added before invoking this method. If this method is
     * invoked before a model can be estimated, <code>Double,NaN</code> is
     * returned.
     * </li></ul></p>
     *
     * @return the intercept of the regression line if the model includes an
     * intercept; 0 otherwise
     * @see #SimpleRegression(boolean)
     */
    public double getIntercept() {
        return hasIntercept ? getIntercept(getSlope()) : 0.0;
    }

    /**
     * Returns true if the model includes an intercept term.
     *
     * @return true if the regression includes an intercept; false otherwise
     * @see #SimpleRegression(boolean)
     */
    public boolean hasIntercept() {
        return hasIntercept;
    }

    /**
    * Returns the slope of the estimated regression line.
    * <p>
    * The least squares estimate of the slope is computed using the
    * <a href="http://www.xycoon.com/estimation4.htm">normal equations</a>.
    * The slope is sometimes denoted b1.</p>
    * <p>
    * <strong>Preconditions</strong>: <ul>
    * <li>At least two observations (with at least two different x values)
    * must have been added before invoking this method. If this method is
    * invoked before a model can be estimated, <code>Double.NaN</code> is
    * returned.
    * </li></ul></p>
    *
    * @return the slope of the regression line
    */
    public double getSlope() {
        if (n < 2) {
            return Double.NaN; //not enough data
        }
        if (FastMath.abs(sumXX) < 10 * Double.MIN_VALUE) {
            return Double.NaN; //not enough variation in x
        }
        return sumXY / sumXX;
    }

    /**
     * Returns the <a href="http://www.xycoon.com/SumOfSquares.htm">
     * sum of squared errors</a> (SSE) associated with the regression
     * model.
     * <p>
     * The sum is computed using the computational formula</p>
     * <p>
     * <code>SSE = SYY - (SXY * SXY / SXX)</code></p>
     * <p>
     * where <code>SYY</code> is the sum of the squared deviations of the y
     * values about their mean, <code>SXX</code> is similarly defined and
     * <code>SXY</code> is the sum of the products of x and y mean deviations.
     * </p><p>
     * The sums are accumulated using the updating algorithm referenced in
     * {@link #addData}.</p>
     * <p>
     * The return value is constrained to be non-negative - i.e., if due to
     * rounding errors the computational formula returns a negative result,
     * 0 is returned.</p>
     * <p>
     * <strong>Preconditions</strong>: <ul>
     * <li>At least two observations (with at least two different x values)
     * must have been added before invoking this method. If this method is
     * invoked before a model can be estimated, <code>Double,NaN</code> is
     * returned.
     * </li></ul></p>
     *
     * @return sum of squared errors associated with the regression model
     */
    public double getSumSquaredErrors() {
        return FastMath.max(0d, sumYY - sumXY * sumXY / sumXX);
    }

    /**
     * Returns the sum of squared deviations of the y values about their mean.
     * <p>
     * This is defined as SSTO
     * <a href="http://www.xycoon.com/SumOfSquares.htm">here</a>.</p>
     * <p>
     * If <code>n < 2</code>, this returns <code>Double.NaN</code>.</p>
     *
     * @return sum of squared deviations of y values
     */
    public double getTotalSumSquares() {
        if (n < 2) {
            return Double.NaN;
        }
        return sumYY;
    }

    /**
     * Returns the sum of squared deviations of the x values about their mean.
     *
     * If <code>n < 2</code>, this returns <code>Double.NaN</code>.</p>
     *
     * @return sum of squared deviations of x values
     */
    public double getXSumSquares() {
        if (n < 2) {
            return Double.NaN;
        }
        return sumXX;
    }

    /**
     * Returns the sum of crossproducts, x<sub>i</sub>*y<sub>i</sub>.
     *
     * @return sum of cross products
     */
    public double getSumOfCrossProducts() {
        return sumXY;
    }

    /**
     * Returns the sum of squared deviations of the predicted y values about
     * their mean (which equals the mean of y).
     * <p>
     * This is usually abbreviated SSR or SSM.  It is defined as SSM
     * <a href="http://www.xycoon.com/SumOfSquares.htm">here</a></p>
     * <p>
     * <strong>Preconditions</strong>: <ul>
     * <li>At least two observations (with at least two different x values)
     * must have been added before invoking this method. If this method is
     * invoked before a model can be estimated, <code>Double.NaN</code> is
     * returned.
     * </li></ul></p>
     *
     * @return sum of squared deviations of predicted y values
     */
    public double getRegressionSumSquares() {
        return getRegressionSumSquares(getSlope());
    }

    /**
     * Returns the sum of squared errors divided by the degrees of freedom,
     * usually abbreviated MSE.
     * <p>
     * If there are fewer than <strong>three</strong> data pairs in the model,
     * or if there is no variation in <code>x</code>, this returns
     * <code>Double.NaN</code>.</p>
     *
     * @return sum of squared deviations of y values
     */
    public double getMeanSquareError() {
        if (n < 3) {
            return Double.NaN;
        }
        return hasIntercept ? (getSumSquaredErrors() / (n - 2)) : (getSumSquaredErrors() / (n - 1));
    }

    /**
     * Returns <a href="http://mathworld.wolfram.com/CorrelationCoefficient.html">
     * Pearson's product moment correlation coefficient</a>,
     * usually denoted r.
     * <p>
     * <strong>Preconditions</strong>: <ul>
     * <li>At least two observations (with at least two different x values)
     * must have been added before invoking this method. If this method is
     * invoked before a model can be estimated, <code>Double,NaN</code> is
     * returned.
     * </li></ul></p>
     *
     * @return Pearson's r
     */
    public double getR() {
        double b1 = getSlope();
        double result = FastMath.sqrt(getRSquare());
        if (b1 < 0) {
            result = -result;
        }
        return result;
    }

    /**
     * Returns the <a href="http://www.xycoon.com/coefficient1.htm">
     * coefficient of determination</a>,
     * usually denoted r-square.
     * <p>
     * <strong>Preconditions</strong>: <ul>
     * <li>At least two observations (with at least two different x values)
     * must have been added before invoking this method. If this method is
     * invoked before a model can be estimated, <code>Double,NaN</code> is
     * returned.
     * </li></ul></p>
     *
     * @return r-square
     */
    public double getRSquare() {
        double ssto = getTotalSumSquares();
        return (ssto - getSumSquaredErrors()) / ssto;
    }

    /**
     * Returns the <a href="http://www.xycoon.com/standarderrorb0.htm">
     * standard error of the intercept estimate</a>,
     * usually denoted s(b0).
     * <p>
     * If there are fewer that <strong>three</strong> observations in the
     * model, or if there is no variation in x, this returns
     * <code>Double.NaN</code>.</p> Additionally, a <code>Double.NaN</code> is
     * returned when the intercept is constrained to be zero
     *
     * @return standard error associated with intercept estimate
     */
    public double getInterceptStdErr() {
        if( !hasIntercept ){
            return Double.NaN;
        }
        return FastMath.sqrt(
            getMeanSquareError() * ((1d / n) + (xbar * xbar) / sumXX));
    }

    /**
     * Returns the <a href="http://www.xycoon.com/standerrorb(1).htm">standard
     * error of the slope estimate</a>,
     * usually denoted s(b1).
     * <p>
     * If there are fewer that <strong>three</strong> data pairs in the model,
     * or if there is no variation in x, this returns <code>Double.NaN</code>.
     * </p>
     *
     * @return standard error associated with slope estimate
     */
    public double getSlopeStdErr() {
        return FastMath.sqrt(getMeanSquareError() / sumXX);
    }

    /**
     * Returns the half-width of a 95% confidence interval for the slope
     * estimate.
     * <p>
     * The 95% confidence interval is</p>
     * <p>
     * <code>(getSlope() - getSlopeConfidenceInterval(),
     * getSlope() + getSlopeConfidenceInterval())</code></p>
     * <p>
     * If there are fewer that <strong>three</strong> observations in the
     * model, or if there is no variation in x, this returns
     * <code>Double.NaN</code>.</p>
     * <p>
     * <strong>Usage Note</strong>:<br>
     * The validity of this statistic depends on the assumption that the
     * observations included in the model are drawn from a
     * <a href="http://mathworld.wolfram.com/BivariateNormalDistribution.html">
     * Bivariate Normal Distribution</a>.</p>
     *
     * @return half-width of 95% confidence interval for the slope estimate
     * @throws OutOfRangeException if the confidence interval can not be computed.
     */
    public double getSlopeConfidenceInterval() throws OutOfRangeException {
        return getSlopeConfidenceInterval(0.05d);
    }

    /**
     * Returns the half-width of a (100-100*alpha)% confidence interval for
     * the slope estimate.
     * <p>
     * The (100-100*alpha)% confidence interval is </p>
     * <p>
     * <code>(getSlope() - getSlopeConfidenceInterval(),
     * getSlope() + getSlopeConfidenceInterval())</code></p>
     * <p>
     * To request, for example, a 99% confidence interval, use
     * <code>alpha = .01</code></p>
     * <p>
     * <strong>Usage Note</strong>:<br>
     * The validity of this statistic depends on the assumption that the
     * observations included in the model are drawn from a
     * <a href="http://mathworld.wolfram.com/BivariateNormalDistribution.html">
     * Bivariate Normal Distribution</a>.</p>
     * <p>
     * <strong> Preconditions:</strong><ul>
     * <li>If there are fewer that <strong>three</strong> observations in the
     * model, or if there is no variation in x, this returns
     * <code>Double.NaN</code>.
     * </li>
     * <li><code>(0 < alpha < 1)</code>; otherwise an
     * <code>OutOfRangeException</code> is thrown.
     * </li></ul></p>
     *
     * @param alpha the desired significance level
     * @return half-width of 95% confidence interval for the slope estimate
     * @throws OutOfRangeException if the confidence interval can not be computed.
     */
    public double getSlopeConfidenceInterval(final double alpha)
    throws OutOfRangeException {
        if (n < 3) {
            return Double.NaN;
        }
        if (alpha >= 1 || alpha <= 0) {
            throw new OutOfRangeException(LocalizedFormats.SIGNIFICANCE_LEVEL,
                                          alpha, 0, 1);
        }
        // No advertised NotStrictlyPositiveException here - will return NaN above
        TDistribution distribution = new TDistribution(n - 2);
        return getSlopeStdErr() *
            distribution.inverseCumulativeProbability(1d - alpha / 2d);
    }

    /**
     * Returns the significance level of the slope (equiv) correlation.
     * <p>
     * Specifically, the returned value is the smallest <code>alpha</code>
     * such that the slope confidence interval with significance level
     * equal to <code>alpha</code> does not include <code>0</code>.
     * On regression output, this is often denoted <code>Prob(|t| > 0)</code>
     * </p><p>
     * <strong>Usage Note</strong>:<br>
     * The validity of this statistic depends on the assumption that the
     * observations included in the model are drawn from a
     * <a href="http://mathworld.wolfram.com/BivariateNormalDistribution.html">
     * Bivariate Normal Distribution</a>.</p>
     * <p>
     * If there are fewer that <strong>three</strong> observations in the
     * model, or if there is no variation in x, this returns
     * <code>Double.NaN</code>.</p>
     *
     * @return significance level for slope/correlation
     * @throws org.apache.commons.math3.exception.MaxCountExceededException
     * if the significance level can not be computed.
     */
    public double getSignificance() {
        if (n < 3) {
            return Double.NaN;
        }
        // No advertised NotStrictlyPositiveException here - will return NaN above
        TDistribution distribution = new TDistribution(n - 2);
        return 2d * (1.0 - distribution.cumulativeProbability(
                    FastMath.abs(getSlope()) / getSlopeStdErr()));
    }

    // ---------------------Private methods-----------------------------------

    /**
    * Returns the intercept of the estimated regression line, given the slope.
    * <p>
    * Will return <code>NaN</code> if slope is <code>NaN</code>.</p>
    *
    * @param slope current slope
    * @return the intercept of the regression line
    */
    private double getIntercept(final double slope) {
      if( hasIntercept){
        return (sumY - slope * sumX) / n;
      }
      return 0.0;
    }

    /**
     * Computes SSR from b1.
     *
     * @param slope regression slope estimate
     * @return sum of squared deviations of predicted y values
     */
    private double getRegressionSumSquares(final double slope) {
        return slope * slope * sumXX;
    }

    /**
     * Performs a regression on data present in buffers and outputs a RegressionResults object.
     *
     * <p>If there are fewer than 3 observations in the model and {@code hasIntercept} is true
     * a {@code NoDataException} is thrown.  If there is no intercept term, the model must
     * contain at least 2 observations.</p>
     *
     * @return RegressionResults acts as a container of regression output
     * @throws ModelSpecificationException if the model is not correctly specified
     * @throws NoDataException if there is not sufficient data in the model to
     * estimate the regression parameters
     */
    public RegressionResults regress() throws ModelSpecificationException, NoDataException {
        if (hasIntercept) {
            if (n < 3) {
                throw new NoDataException(LocalizedFormats.NOT_ENOUGH_DATA_REGRESSION);
            }
            if (FastMath.abs(sumXX) > Precision.SAFE_MIN) {
                final double[] params = new double[] { getIntercept(), getSlope() };
                final double mse = getMeanSquareError();
                final double _syy = sumYY + sumY * sumY / n;
                final double[] vcv = new double[] { mse * (xbar * xbar / sumXX + 1.0 / n), -xbar * mse / sumXX, mse / sumXX };
                return new RegressionResults(params, new double[][] { vcv }, true, n, 2, sumY, _syy, getSumSquaredErrors(), true,
                        false);
            } else {
                final double[] params = new double[] { sumY / n, Double.NaN };
                // final double mse = getMeanSquareError();
                final double[] vcv = new double[] { ybar / (n - 1.0), Double.NaN, Double.NaN };
                return new RegressionResults(params, new double[][] { vcv }, true, n, 1, sumY, sumYY, getSumSquaredErrors(), true,
                        false);
            }
        } else {
            if (n < 2) {
                throw new NoDataException(LocalizedFormats.NOT_ENOUGH_DATA_REGRESSION);
            }
            if (!Double.isNaN(sumXX)) {
                final double[] vcv = new double[] { getMeanSquareError() / sumXX };
                final double[] params = new double[] { sumXY / sumXX };
                return new RegressionResults(params, new double[][] { vcv }, true, n, 1, sumY, sumYY, getSumSquaredErrors(), false,
                        false);
            } else {
                final double[] vcv = new double[] { Double.NaN };
                final double[] params = new double[] { Double.NaN };
                return new RegressionResults(params, new double[][] { vcv }, true, n, 1, Double.NaN, Double.NaN, Double.NaN, false,
                        false);
            }
        }
    }

    /**
     * Performs a regression on data present in buffers including only regressors
     * indexed in variablesToInclude and outputs a RegressionResults object
     * @param variablesToInclude an array of indices of regressors to include
     * @return RegressionResults acts as a container of regression output
     * @throws MathIllegalArgumentException if the variablesToInclude array is null or zero length
     * @throws OutOfRangeException if a requested variable is not present in model
     */
    public RegressionResults regress(int[] variablesToInclude) throws MathIllegalArgumentException{
        if( variablesToInclude == null || variablesToInclude.length == 0){
          throw new MathIllegalArgumentException(LocalizedFormats.ARRAY_ZERO_LENGTH_OR_NULL_NOT_ALLOWED);
        }
        if( variablesToInclude.length > 2 || (variablesToInclude.length > 1 && !hasIntercept) ){
            throw new ModelSpecificationException(
                    LocalizedFormats.ARRAY_SIZE_EXCEEDS_MAX_VARIABLES,
                    (variablesToInclude.length > 1 && !hasIntercept) ? 1 : 2);
        }

        if( hasIntercept ){
            if( variablesToInclude.length == 2 ){
                if( variablesToInclude[0] == 1 ){
                    throw new ModelSpecificationException(LocalizedFormats.NOT_INCREASING_SEQUENCE);
                }else if( variablesToInclude[0] != 0 ){
                    throw new OutOfRangeException( variablesToInclude[0], 0,1 );
                }
                if( variablesToInclude[1] != 1){
                     throw new OutOfRangeException( variablesToInclude[0], 0,1 );
                }
                return regress();
            }else{
                if( variablesToInclude[0] != 1 && variablesToInclude[0] != 0 ){
                     throw new OutOfRangeException( variablesToInclude[0],0,1 );
                }
                final double _mean = sumY * sumY / n;
                final double _syy = sumYY + _mean;
                if( variablesToInclude[0] == 0 ){
                    //just the mean
                    final double[] vcv = new double[]{ sumYY/(((n-1)*n)) };
                    final double[] params = new double[]{ ybar };
                    return new RegressionResults(
                      params, new double[][]{vcv}, true, n, 1,
                      sumY, _syy+_mean, sumYY,true,false);

                }else if( variablesToInclude[0] == 1){
                    //final double _syy = sumYY + sumY * sumY / ((double) n);
                    final double _sxx = sumXX + sumX * sumX / n;
                    final double _sxy = sumXY + sumX * sumY / n;
                    final double _sse = FastMath.max(0d, _syy - _sxy * _sxy / _sxx);
                    final double _mse = _sse/((n-1));
                    if( !Double.isNaN(_sxx) ){
                        final double[] vcv = new double[]{ _mse / _sxx };
                        final double[] params = new double[]{ _sxy/_sxx };
                        return new RegressionResults(
                                    params, new double[][]{vcv}, true, n, 1,
                                    sumY, _syy, _sse,false,false);
                    }else{
                        final double[] vcv = new double[]{Double.NaN };
                        final double[] params = new double[]{ Double.NaN };
                        return new RegressionResults(
                                    params, new double[][]{vcv}, true, n, 1,
                                    Double.NaN, Double.NaN, Double.NaN,false,false);
                    }
                }
            }
        }else{
            if( variablesToInclude[0] != 0 ){
                throw new OutOfRangeException(variablesToInclude[0],0,0);
            }
            return regress();
        }

        return null;
    }
}