aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/commonfns/test_mix.cpp
blob: 92c1010050f0f91ce924ab9b03ed5d5eeb414101 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//
// Copyright (c) 2023 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>

#include "procs.h"
#include "test_base.h"


const char *mix_fn_code_pattern =
    "%s\n" /* optional pragma */
    "__kernel void test_fn(__global %s%s *x, __global %s%s *y, __global %s%s "
    "*a, __global %s%s *dst)\n"
    "{\n"
    "    int  tid = get_global_id(0);\n"
    "    dst[tid] = mix(x[tid], y[tid], a[tid]);\n"
    "}\n";

const char *mix_fn_code_pattern_v3 =
    "%s\n" /* optional pragma */
    "__kernel void test_fn(__global %s *x, __global %s *y, __global %s *a, "
    "__global %s *dst)\n"
    "{\n"
    "    int  tid = get_global_id(0);\n"
    "\n"
    "    vstore3(mix(vload3(tid, x), vload3(tid, y), vload3(tid, a)), tid, "
    "dst);\n"
    "}\n";

const char *mix_fn_code_pattern_v3_scalar =
    "%s\n" /* optional pragma */
    "__kernel void test_fn(__global %s *x, __global %s *y, __global %s *a, "
    "__global %s *dst)\n"
    "{\n"
    "    int  tid = get_global_id(0);\n"
    "\n"
    "    vstore3(mix(vload3(tid, x), vload3(tid, y), a[tid]), tid, dst);\n"
    "}\n";


#define MAX_ERR 1e-3

namespace {


template <typename T>
int verify_mix(const T *const inptrX, const T *const inptrY,
               const T *const inptrA, const T *const outptr, const int n,
               const int veclen, const bool vecParam)
{
    T r;
    float delta = 0.0f;
    int i;

    if (vecParam)
    {
        for (i = 0; i < n * veclen; i++)
        {
            r = inptrX[i] + ((inptrY[i] - inptrX[i]) * inptrA[i]);
            delta = fabs(double(r - outptr[i])) / r;
            if (delta > MAX_ERR)
            {
                log_error(
                    "%d) verification error: mix(%a, %a, %a) = *%a vs. %a\n", i,
                    inptrX[i], inptrY[i], inptrA[i], r, outptr[i]);
                return -1;
            }
        }
    }
    else
    {
        for (int i = 0; i < n; ++i)
        {
            int ii = i / veclen;
            int vi = i * veclen;
            for (int j = 0; j < veclen; ++j, ++vi)
            {
                r = inptrX[vi] + ((inptrY[vi] - inptrX[vi]) * inptrA[i]);
                delta = fabs(double(r - outptr[vi])) / r;
                if (delta > MAX_ERR)
                {
                    log_error("{%d, element %d}) verification error: mix(%a, "
                              "%a, %a) = *%a vs. %a\n",
                              ii, j, inptrX[vi], inptrY[vi], inptrA[i], r,
                              outptr[vi]);
                    return -1;
                }
            }
        }
    }

    return 0;
}
} // namespace


template <typename T>
int test_mix_fn(cl_device_id device, cl_context context, cl_command_queue queue,
                int n_elems, bool vecParam)
{
    clMemWrapper streams[4];
    std::vector<T> input_ptr[3], output_ptr;

    std::vector<clProgramWrapper> programs;
    std::vector<clKernelWrapper> kernels;

    int err, i;
    MTdataHolder d = MTdataHolder(gRandomSeed);

    assert(BaseFunctionTest::type2name.find(sizeof(T))
           != BaseFunctionTest::type2name.end());
    auto tname = BaseFunctionTest::type2name[sizeof(T)];

    programs.resize(kTotalVecCount);
    kernels.resize(kTotalVecCount);

    int num_elements = n_elems * (1 << (kTotalVecCount - 1));


    for (i = 0; i < 3; i++) input_ptr[i].resize(num_elements);
    output_ptr.resize(num_elements);

    for (i = 0; i < 4; i++)
    {
        streams[i] = clCreateBuffer(context, CL_MEM_READ_WRITE,
                                    sizeof(T) * num_elements, NULL, &err);
        test_error(err, "clCreateBuffer failed");
    }

    for (i = 0; i < num_elements; i++)
    {
        input_ptr[0][i] = (T)genrand_real1(d);
        input_ptr[1][i] = (T)genrand_real1(d);
        input_ptr[2][i] = (T)genrand_real1(d);
    }

    std::string pragma_str;
    if (std::is_same<T, double>::value)
    {
        pragma_str = "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n";
    }

    for (i = 0; i < 3; i++)
    {
        err = clEnqueueWriteBuffer(queue, streams[i], CL_TRUE, 0,
                                   sizeof(T) * num_elements,
                                   &input_ptr[i].front(), 0, NULL, NULL);
        test_error(err, "Unable to write input buffer");
    }

    char vecSizeNames[][3] = { "", "2", "4", "8", "16", "3" };

    for (i = 0; i < kTotalVecCount; i++)
    {
        std::string kernelSource;
        if (i >= kVectorSizeCount)
        {
            if (vecParam)
            {
                std::string str = mix_fn_code_pattern_v3;
                kernelSource =
                    string_format(str, pragma_str.c_str(), tname.c_str(),
                                  tname.c_str(), tname.c_str(), tname.c_str());
            }
            else
            {
                std::string str = mix_fn_code_pattern_v3_scalar;
                kernelSource =
                    string_format(str, pragma_str.c_str(), tname.c_str(),
                                  tname.c_str(), tname.c_str(), tname.c_str());
            }
        }
        else
        {
            // regular path
            std::string str = mix_fn_code_pattern;
            kernelSource =
                string_format(str, pragma_str.c_str(), tname.c_str(),
                              vecSizeNames[i], tname.c_str(), vecSizeNames[i],
                              tname.c_str(), vecParam ? vecSizeNames[i] : "",
                              tname.c_str(), vecSizeNames[i]);
        }
        const char *programPtr = kernelSource.c_str();
        err =
            create_single_kernel_helper(context, &programs[i], &kernels[i], 1,
                                        (const char **)&programPtr, "test_fn");
        test_error(err, "Unable to create kernel");

        for (int j = 0; j < 4; j++)
        {
            err =
                clSetKernelArg(kernels[i], j, sizeof(streams[j]), &streams[j]);
            test_error(err, "Unable to set kernel argument");
        }

        size_t threads = (size_t)n_elems;

        err = clEnqueueNDRangeKernel(queue, kernels[i], 1, NULL, &threads, NULL,
                                     0, NULL, NULL);
        test_error(err, "Unable to execute kernel");

        err = clEnqueueReadBuffer(queue, streams[3], true, 0,
                                  sizeof(T) * num_elements, &output_ptr[0], 0,
                                  NULL, NULL);
        test_error(err, "Unable to read results");

        if (verify_mix(&input_ptr[0].front(), &input_ptr[1].front(),
                       &input_ptr[2].front(), &output_ptr.front(), n_elems,
                       g_arrVecSizes[i], vecParam))
        {
            log_error("mix %s%d%s test failed\n", tname.c_str(),
                      ((g_arrVecSizes[i])),
                      vecParam ? "" : std::string(", " + tname).c_str());
            err = -1;
        }
        else
        {
            log_info("mix %s%d%s test passed\n", tname.c_str(),
                     ((g_arrVecSizes[i])),
                     vecParam ? "" : std::string(", " + tname).c_str());
            err = 0;
        }

        if (err) break;
    }

    return err;
}


cl_int MixTest::Run()
{
    cl_int error = CL_SUCCESS;

    error = test_mix_fn<float>(device, context, queue, num_elems, vecParam);
    test_error(error, "MixTest::Run<float> failed");

    if (is_extension_available(device, "cl_khr_fp64"))
    {
        error =
            test_mix_fn<double>(device, context, queue, num_elems, vecParam);
        test_error(error, "MixTest::Run<double> failed");
    }

    return error;
}


int test_mix(cl_device_id device, cl_context context, cl_command_queue queue,
             int n_elems)
{
    return MakeAndRunTest<MixTest>(device, context, queue, n_elems, "mix",
                                   true);
}


int test_mixf(cl_device_id device, cl_context context, cl_command_queue queue,
              int n_elems)
{
    return MakeAndRunTest<MixTest>(device, context, queue, n_elems, "mix",
                                   false);
}