aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/basic/test_vector_creation.cpp
blob: 6bae156acf21ccc3468de95752a072ef6c23a6f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
//
// Copyright (c) 2023 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "procs.h"
#include "harness/conversions.h"
#include "harness/typeWrappers.h"
#include "harness/errorHelpers.h"
#include <vector>

#include <CL/cl_half.h>

#define DEBUG 0
#define DEPTH 16
// Limit the maximum code size for any given kernel.
#define MAX_CODE_SIZE (1024 * 32)

static const int sizes[] = { 1, 2, 3, 4, 8, 16, -1, -1, -1, -1 };
static const int initial_no_sizes[] = { 0, 0, 0, 0, 0, 0, 2 };
static const char *size_names[] = { "",   "2",   "3",   "4",   "8",
                                    "16", "!!a", "!!b", "!!c", "!!d" };
static char extension[128] = { 0 };

// Creates a kernel by enumerating all possible ways of building the vector out
// of vloads skip_to_results will skip results up to a given number. If the
// amount of code generated is greater than MAX_CODE_SIZE, this function will
// return the number of results used, which can then be used as the
// skip_to_result value to continue where it left off.
int create_kernel(ExplicitType type, int output_size, char *program,
                  int *number_of_results, int skip_to_result)
{

    int number_of_sizes;

    switch (output_size)
    {
        case 1: number_of_sizes = 1; break;
        case 2: number_of_sizes = 2; break;
        case 3: number_of_sizes = 3; break;
        case 4: number_of_sizes = 4; break;
        case 8: number_of_sizes = 5; break;
        case 16: number_of_sizes = 6; break;
        default: log_error("Invalid size: %d\n", output_size); return -1;
    }

    int total_results = 0;
    int current_result = 0;
    int total_vloads = 0;
    int total_program_length = 0;
    int aborted_due_to_size = 0;

    if (skip_to_result < 0) skip_to_result = 0;

    // The line of code for the vector creation
    char line[1024];
    // Keep track of what size vector we are using in each position so we can
    // iterate through all fo them
    int pos[DEPTH];
    int max_size = output_size;
    if (DEBUG > 1) log_info("max_size: %d\n", max_size);

    program[0] = '\0';
    sprintf(program,
            "%s\n__kernel void test_vector_creation(__global %s *src, __global "
            "%s%s *result) {\n",
            extension, get_explicit_type_name(type),
            get_explicit_type_name(type),
            (number_of_sizes == 3) ? "" : size_names[number_of_sizes - 1]);
    total_program_length += (int)strlen(program);

    char storePrefix[128], storeSuffix[128];

    // Start out trying sizes 1,1,1... by initializing pos array to zeros for
    // all vector sizes except 16. For 16-sizes initial_no_sizes array holds
    // factor to omit time consuming, similar creation cases tested earlier.
    for (int i = 0; i < DEPTH; i++) pos[i] = initial_no_sizes[number_of_sizes];

    int done = 0;
    while (!done)
    {
        if (DEBUG > 1)
        {
            log_info("pos size[] = [");
            for (int k = 0; k < DEPTH; k++) log_info(" %d ", pos[k]);
            log_info("]\n");
        }

        // Go through the selected vector sizes and see if the first n of them
        // fit the
        //  required size exactly.
        int size_so_far = 0;
        int vloads;
        for (vloads = 0; vloads < DEPTH; vloads++)
        {
            if (size_so_far + sizes[pos[vloads]] <= max_size)
            {
                size_so_far += sizes[pos[vloads]];
            }
            else
            {
                break;
            }
        }
        if (DEBUG > 1)
            log_info("vloads: %d, size_so_far:%d\n", vloads, size_so_far);

        // If they did not fit the required size exactly it is too long, so
        // there is no point in checking any other combinations
        //  of the sizes to the right. Prune them from the search.
        if (size_so_far != max_size)
        {
            // Zero all the sizes to the right
            for (int k = vloads + 1; k < DEPTH; k++)
            {
                pos[k] = 0;
            }
            // Increment this current size and propagate the values up if needed
            for (int d = vloads; d >= 0; d--)
            {
                pos[d]++;
                if (pos[d] >= number_of_sizes)
                {
                    pos[d] = 0;
                    if (d == 0)
                    {
                        // If we rolled over then we are done
                        done = 1;
                        break;
                    }
                }
                else
                {
                    break;
                }
            }
            // Go on to the next size since this one (and all others "under" it)
            // didn't fit
            continue;
        }


        // Generate the actual load line if we are building this part
        line[0] = '\0';
        if (skip_to_result == 0 || total_results >= skip_to_result)
        {
            if (number_of_sizes == 3)
            {
                sprintf(storePrefix, "vstore3( ");
                sprintf(storeSuffix, ", %d, result )", current_result);
            }
            else
            {
                sprintf(storePrefix, "result[%d] = ", current_result);
                storeSuffix[0] = 0;
            }

            sprintf(line, "\t%s(%s%d)(", storePrefix,
                    get_explicit_type_name(type), output_size);
            current_result++;

            int offset = 0;
            for (int i = 0; i < vloads; i++)
            {
                if (pos[i] == 0)
                    sprintf(line + strlen(line), "src[%d]", offset);
                else
                    sprintf(line + strlen(line), "vload%s(0,src+%d)",
                            size_names[pos[i]], offset);
                offset += sizes[pos[i]];
                if (i < (vloads - 1)) sprintf(line + strlen(line), ",");
            }
            sprintf(line + strlen(line), ")%s;\n", storeSuffix);

            strcat(program, line);
            total_vloads += vloads;
        }
        total_results++;
        total_program_length += (int)strlen(line);
        if (total_program_length > MAX_CODE_SIZE)
        {
            aborted_due_to_size = 1;
            done = 1;
        }


        if (DEBUG) log_info("line is: %s", line);

        // If we did not use all of them, then we ignore any changes further to
        // the right. We do this by causing those loops to skip on the next
        // iteration.
        if (vloads < DEPTH)
        {
            if (DEBUG > 1) log_info("done with this depth\n");
            for (int k = vloads; k < DEPTH; k++) pos[k] = number_of_sizes;
        }

        // Increment the far right size by 1, rolling over as needed
        for (int d = DEPTH - 1; d >= 0; d--)
        {
            pos[d]++;
            if (pos[d] >= number_of_sizes)
            {
                pos[d] = 0;
                if (d == 0)
                {
                    // If we rolled over at the far-left then we are done
                    done = 1;
                    break;
                }
            }
            else
            {
                break;
            }
        }
        if (done) break;

        // Continue until we are done.
    }
    strcat(program, "}\n\n"); // log_info("%s\n", program);
    total_program_length += 3;
    if (DEBUG)
        log_info(
            "\t\t(Program for vector type %s%s contains %d vector creations, "
            "of total program length %gkB, with a total of %d vloads.)\n",
            get_explicit_type_name(type), size_names[number_of_sizes - 1],
            total_results, total_program_length / 1024.0, total_vloads);
    *number_of_results = current_result;
    if (aborted_due_to_size) return total_results;
    return 0;
}


int test_vector_creation(cl_device_id deviceID, cl_context context,
                         cl_command_queue queue, int num_elements)
{
    const std::vector<ExplicitType> vecType = { kChar,  kUChar, kShort, kUShort,
                                                kInt,   kUInt,  kLong,  kULong,
                                                kFloat, kHalf,  kDouble };
    // should be in sync with global array size_names
    const std::vector<unsigned int> vecSizes = { 1, 2, 3, 4, 8, 16 };

    int error = CL_SUCCESS;
    int total_errors = 0;
    int number_of_results = 0;

    std::vector<char> input_data_converted(sizeof(cl_double) * 16);
    std::vector<char> program_source(sizeof(char) * 1024 * 1024 * 4);
    std::vector<char> output_data;

    // Iterate over all the types
    for (size_t type_index = 0; type_index < vecType.size(); type_index++)
    {

        if (!gHasLong
            && ((vecType[type_index] == kLong)
                || (vecType[type_index] == kULong)))
        {
            log_info("Long/ULong data type not supported on this device\n");
            continue;
        }
        else if (vecType[type_index] == kDouble)
        {
            if (!is_extension_available(deviceID, "cl_khr_fp64"))
            {
                log_info("Extension cl_khr_fp64 not supported; skipping double "
                         "tests.\n");
                continue;
            }
            snprintf(extension, sizeof(extension), "%s",
                     "#pragma OPENCL EXTENSION cl_khr_fp64 : enable");
        }
        else if (vecType[type_index] == kHalf)
        {
            if (!is_extension_available(deviceID, "cl_khr_fp16"))
            {
                log_info("Extension cl_khr_fp16 not supported; skipping half "
                         "tests.\n");
                continue;
            }
            snprintf(extension, sizeof(extension), "%s",
                     "#pragma OPENCL EXTENSION cl_khr_fp16 : enable");
        }

        log_info("Testing %s.\n", get_explicit_type_name(vecType[type_index]));

        // Convert the data to the right format for the test.
        memset(input_data_converted.data(), 0xff, sizeof(cl_double) * 16);
        if (vecType[type_index] == kDouble)
        {
            const cl_double input_data_double[16] = { 0,  1,  2,  3, 4,  5,
                                                      6,  7,  8,  9, 10, 11,
                                                      12, 13, 14, 15 };
            memcpy(input_data_converted.data(), &input_data_double,
                   sizeof(cl_double) * 16);
        }
        else if (vecType[type_index] == kHalf)
        {
            cl_half *buf =
                reinterpret_cast<cl_half *>(input_data_converted.data());
            for (int j = 0; j < 16; j++)
                buf[j] = cl_half_from_float(float(j), CL_HALF_RTE);
        }
        else
        {
            for (int j = 0; j < 16; j++)
            {
                convert_explicit_value(
                    &j,
                    ((char *)input_data_converted.data())
                        + get_explicit_type_size(vecType[type_index]) * j,
                    kInt, 0, kRoundToEven, vecType[type_index]);
            }
        }

        clMemWrapper input =
            clCreateBuffer(context, CL_MEM_COPY_HOST_PTR,
                           get_explicit_type_size(vecType[type_index]) * 16,
                           input_data_converted.data(), &error);
        if (error)
        {
            print_error(error, "clCreateBuffer failed");
            total_errors++;
            continue;
        }

        // Iterate over all the vector sizes.
        for (size_t size_index = 1; size_index < vecSizes.size(); size_index++)
        {
            size_t global[] = { 1, 1, 1 };
            int number_generated = -1;
            int previous_number_generated = 0;

            log_info("Testing %s%s...\n",
                     get_explicit_type_name(vecType[type_index]),
                     size_names[size_index]);
            while (number_generated != 0)
            {
                clMemWrapper output;
                clKernelWrapper kernel;
                clProgramWrapper program;

                number_generated =
                    create_kernel(vecType[type_index], vecSizes[size_index],
                                  program_source.data(), &number_of_results,
                                  number_generated);
                if (number_generated != 0)
                {
                    if (previous_number_generated == 0)
                        log_info("Code size greater than %gkB; splitting test "
                                 "into multiple kernels.\n",
                                 MAX_CODE_SIZE / 1024.0);
                    log_info("\tExecuting vector permutations %d to %d...\n",
                             previous_number_generated, number_generated - 1);
                }

                char *src = program_source.data();
                error = create_single_kernel_helper(context, &program, &kernel,
                                                    1, (const char **)&src,
                                                    "test_vector_creation");
                if (error)
                {
                    log_error("create_single_kernel_helper failed.\n");
                    total_errors++;
                    break;
                }

                output = clCreateBuffer(
                    context, CL_MEM_WRITE_ONLY,
                    number_of_results
                        * get_explicit_type_size(vecType[type_index])
                        * vecSizes[size_index],
                    NULL, &error);
                if (error)
                {
                    print_error(error, "clCreateBuffer failed");
                    total_errors++;
                    break;
                }

                error = clSetKernelArg(kernel, 0, sizeof(input), &input);
                error |= clSetKernelArg(kernel, 1, sizeof(output), &output);
                if (error)
                {
                    print_error(error, "clSetKernelArg failed");
                    total_errors++;
                    break;
                }

                error = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, global,
                                               NULL, 0, NULL, NULL);
                if (error)
                {
                    print_error(error, "clEnqueueNDRangeKernel failed");
                    total_errors++;
                    break;
                }

                error = clFinish(queue);
                if (error)
                {
                    print_error(error, "clFinish failed");
                    total_errors++;
                    break;
                }

                output_data.resize(number_of_results
                                   * get_explicit_type_size(vecType[type_index])
                                   * vecSizes[size_index]);
                memset(output_data.data(), 0xff,
                       number_of_results
                           * get_explicit_type_size(vecType[type_index])
                           * vecSizes[size_index]);
                error = clEnqueueReadBuffer(
                    queue, output, CL_TRUE, 0,
                    number_of_results
                        * get_explicit_type_size(vecType[type_index])
                        * vecSizes[size_index],
                    output_data.data(), 0, NULL, NULL);
                if (error)
                {
                    print_error(error, "clEnqueueReadBuffer failed");
                    total_errors++;
                    break;
                }

                // Check the results
                char *res = (char *)output_data.data();
                char *exp = (char *)input_data_converted.data();
                for (int i = 0; i < number_of_results; i++)
                {
                    // If they do not match, then print out why
                    if (memcmp(exp,
                               res
                                   + i
                                       * (get_explicit_type_size(
                                              vecType[type_index])
                                          * vecSizes[size_index]),
                               get_explicit_type_size(vecType[type_index])
                                   * vecSizes[size_index]))
                    {
                        log_error("Data failed to validate for result %d\n", i);

                        // Find the line in the program that failed. This is
                        // ugly.
                        char search[32] = { 0 };
                        char found_line[1024] = { 0 };
                        sprintf(search, "result[%d] = (", i);
                        char *start_loc = strstr(program_source.data(), search);
                        if (start_loc == NULL)
                            log_error("Failed to find program source for "
                                      "failure for %s in \n%s",
                                      search, program_source.data());
                        else
                        {
                            char *end_loc = strstr(start_loc, "\n");
                            memcpy(&found_line, start_loc,
                                   (end_loc - start_loc));
                            found_line[end_loc - start_loc] = '\0';
                            log_error("Failed vector line: %s\n", found_line);
                        }

                        for (int j = 0; j < (int)vecSizes[size_index]; j++)
                        {
                            char expected_value[64] = { 0 };
                            char returned_value[64] = { 0 };
                            print_type_to_string(
                                vecType[type_index],
                                (void *)(res
                                         + get_explicit_type_size(
                                               vecType[type_index])
                                             * (i * vecSizes[size_index] + j)),
                                returned_value);
                            print_type_to_string(
                                vecType[type_index],
                                (void *)(exp
                                         + get_explicit_type_size(
                                               vecType[type_index])
                                             * j),
                                expected_value);
                            log_error("index [%d, component %d]: got: %s "
                                      "expected: %s\n",
                                      i, j, returned_value, expected_value);
                        }
                        total_errors++;
                    }
                }
                previous_number_generated = number_generated;
            } // number_generated != 0
        } // vector sizes
    } // vector types

    return total_errors;
}