aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/basic/test_barrier.cpp
blob: 6352b42fafb2ac3b1991b0cb1a4efa59db189f9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <algorithm>
#include <numeric>
#include <vector>

#include "procs.h"

namespace {
const char *barrier_kernel_code = R"(
__kernel void compute_sum(__global int *a, int n, __global int *tmp_sum,
                          __global int *sum)
{
    int tid = get_local_id(0);
    int lsize = get_local_size(0);
    int i;

    tmp_sum[tid] = 0;
    for (i = tid; i < n; i += lsize) tmp_sum[tid] += a[i];

    // updated to work for any workgroup size
    for (i = hadd(lsize, 1); lsize > 1; i = hadd(i, 1))
    {
        BARRIER(CLK_GLOBAL_MEM_FENCE);
        if (tid + i < lsize) tmp_sum[tid] += tmp_sum[tid + i];
        lsize = i;
    }

    // no barrier is required here because last person to write to tmp_sum[0]
    // was tid 0
    if (tid == 0) *sum = tmp_sum[0];
}
)";


void generate_random_inputs(std::vector<cl_int> &v)
{
    RandomSeed seed(gRandomSeed);

    auto random_generator = [&seed]() {
        return static_cast<cl_int>(
            get_random_float(-0x01000000, 0x01000000, seed));
    };

    std::generate(v.begin(), v.end(), random_generator);
}

int test_barrier_common(cl_device_id device, cl_context context,
                        cl_command_queue queue, int num_elements,
                        std::string barrier_str)
{
    clMemWrapper streams[3];
    clProgramWrapper program;
    clKernelWrapper kernel;

    cl_int output;
    int err;

    size_t max_threadgroup_size = 0;
    std::string build_options = std::string("-DBARRIER=") + barrier_str;
    err = create_single_kernel_helper(context, &program, &kernel, 1,
                                      &barrier_kernel_code, "compute_sum",
                                      build_options.c_str());
    test_error(err, "Failed to build kernel/program.");

    err = get_max_allowed_1d_work_group_size_on_device(device, kernel,
                                                       &max_threadgroup_size);
    test_error(err, "get_max_allowed_1d_work_group_size_on_device failed.");

    // work group size must divide evenly into the global size
    while (num_elements % max_threadgroup_size) max_threadgroup_size--;

    std::vector<cl_int> input(num_elements);

    streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE,
                                sizeof(cl_int) * num_elements, nullptr, &err);
    test_error(err, "clCreateBuffer failed.");
    streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_int),
                                nullptr, &err);
    test_error(err, "clCreateBuffer failed.");
    streams[2] =
        clCreateBuffer(context, CL_MEM_READ_WRITE,
                       sizeof(cl_int) * max_threadgroup_size, nullptr, &err);
    test_error(err, "clCreateBuffer failed.");

    generate_random_inputs(input);

    err = clEnqueueWriteBuffer(queue, streams[0], CL_TRUE, 0,
                               sizeof(cl_int) * num_elements, input.data(), 0,
                               nullptr, nullptr);
    test_error(err, "clEnqueueWriteBuffer failed.");

    err = clSetKernelArg(kernel, 0, sizeof(streams[0]), &streams[0]);
    err |= clSetKernelArg(kernel, 1, sizeof(num_elements), &num_elements);
    err |= clSetKernelArg(kernel, 2, sizeof(streams[2]), &streams[2]);
    err |= clSetKernelArg(kernel, 3, sizeof(streams[1]), &streams[1]);
    test_error(err, "clSetKernelArg failed.");

    size_t global_threads[] = { max_threadgroup_size };
    size_t local_threads[] = { max_threadgroup_size };

    err = clEnqueueNDRangeKernel(queue, kernel, 1, nullptr, global_threads,
                                 local_threads, 0, nullptr, nullptr);
    test_error(err, "clEnqueueNDRangeKernel failed.");

    err = clEnqueueReadBuffer(queue, streams[1], true, 0, sizeof(cl_int),
                              &output, 0, nullptr, nullptr);
    test_error(err, "clEnqueueReadBuffer failed.");

    if (std::accumulate(input.begin(), input.end(), 0) != output)
    {
        log_error("%s test failed\n", barrier_str.c_str());
        err = -1;
    }
    else
    {
        log_info("%s test passed\n", barrier_str.c_str());
    }

    return err;
}
}

int test_barrier(cl_device_id device, cl_context context,
                 cl_command_queue queue, int num_elements)
{
    return test_barrier_common(device, context, queue, num_elements, "barrier");
}

int test_wg_barrier(cl_device_id device, cl_context context,
                    cl_command_queue queue, int num_elements)
{
    return test_barrier_common(device, context, queue, num_elements,
                               "work_group_barrier");
}