aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/allocations/main.cpp
blob: 827072fc7f9781d07d4f88fff83390e8d0c2ab12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//
// Copyright (c) 2017 The Khronos Group Inc.
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "testBase.h"

#include "allocation_functions.h"
#include "allocation_fill.h"
#include "allocation_execute.h"
#include "harness/testHarness.h"
#include "harness/parseParameters.h"
#include <time.h>

typedef long long unsigned llu;

int g_repetition_count = 1;
int g_reduction_percentage = 100;
int g_write_allocations = 1;
int g_multiple_allocations = 0;
int g_execute_kernel = 1;

static size_t g_max_size;
static RandomSeed g_seed( gRandomSeed );

cl_long g_max_individual_allocation_size;
cl_long g_global_mem_size;

cl_uint checksum;

static void printUsage( const char *execName );

test_status init_cl( cl_device_id device ) {
    int error;

    error = clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(g_max_individual_allocation_size), &g_max_individual_allocation_size, NULL );
    if ( error ) {
        print_error( error, "clGetDeviceInfo failed for CL_DEVICE_MAX_MEM_ALLOC_SIZE");
        return TEST_FAIL;
    }
    error = clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(g_global_mem_size), &g_global_mem_size, NULL );
    if ( error ) {
        print_error( error, "clGetDeviceInfo failed for CL_DEVICE_GLOBAL_MEM_SIZE");
        return TEST_FAIL;
    }

    log_info("Device reports CL_DEVICE_MAX_MEM_ALLOC_SIZE=%llu bytes (%gMB), CL_DEVICE_GLOBAL_MEM_SIZE=%llu bytes (%gMB).\n",
             llu( g_max_individual_allocation_size ), toMB( g_max_individual_allocation_size ),
             llu( g_global_mem_size ), toMB( g_global_mem_size ) );

    if( g_global_mem_size > (cl_ulong)SIZE_MAX )
    {
        g_global_mem_size = (cl_ulong)SIZE_MAX;
    }

    if( g_max_individual_allocation_size > g_global_mem_size )
    {
        log_error( "FAILURE:  CL_DEVICE_MAX_MEM_ALLOC_SIZE (%llu) is greater than the CL_DEVICE_GLOBAL_MEM_SIZE (%llu)\n",
                   llu( g_max_individual_allocation_size ), llu( g_global_mem_size ) );
        return TEST_FAIL;
    }

    // We may need to back off the global_mem_size on unified memory devices to leave room for application and operating system code
    // and associated data in the working set, so we dont start pathologically paging.
    // Check to see if we are a unified memory device
    cl_bool hasUnifiedMemory = CL_FALSE;
    if( ( error = clGetDeviceInfo( device, CL_DEVICE_HOST_UNIFIED_MEMORY, sizeof( hasUnifiedMemory ), &hasUnifiedMemory, NULL ) ) )
    {
        print_error( error, "clGetDeviceInfo failed for CL_DEVICE_HOST_UNIFIED_MEMORY");
        return TEST_FAIL;
    }
    // we share unified memory so back off to 1/2 the global memory size.
    if( CL_TRUE == hasUnifiedMemory )
    {
        g_global_mem_size -= g_global_mem_size /2;
        log_info( "Device shares memory with the host, so backing off the maximum combined allocation size to be %gMB to avoid rampant paging.\n",
                  toMB( g_global_mem_size ) );
    }
    else
    {
        // Lets just use 60% of total available memory as framework/driver may not allow using all of it
        // e.g. vram on GPU is used by window server and even for this test, we need some space for context,
        // queue, kernel code on GPU.
        g_global_mem_size *= 0.60;
    }

    if( gReSeed )
    {
        g_seed = RandomSeed( gRandomSeed );
    }

    return TEST_PASS;
}

int doTest( cl_device_id device, cl_context context, cl_command_queue queue, AllocType alloc_type )
{
    int error;
    int failure_counts = 0;
    size_t final_size;
    size_t current_test_size;
    cl_mem mems[MAX_NUMBER_TO_ALLOCATE];
    int number_of_mems_used;
    cl_ulong max_individual_allocation_size = g_max_individual_allocation_size;
    cl_ulong global_mem_size = g_global_mem_size ;
    const bool allocate_image =
        (alloc_type != BUFFER) && (alloc_type != BUFFER_NON_BLOCKING);

    static const char* alloc_description[] = {
        "buffer(s)",
        "read-only image(s)",
        "write-only image(s)",
        "buffer(s)",
        "read-only image(s)",
        "write-only image(s)",
    };

    // Skip image tests if we don't support images on the device
    if (allocate_image && checkForImageSupport(device))
    {
        log_info( "Can not test image allocation because device does not support images.\n" );
        return 0;
    }

    // This section was added in order to fix a bug in the test
    // If CL_DEVICE_MAX_MEM_ALLOC_SIZE is much grater than CL_DEVICE_IMAGE2D_MAX_WIDTH * CL_DEVICE_IMAGE2D_MAX_HEIGHT
    // The test will fail in image allocations as the size requested for the allocation will be much grater than the maximum size allowed for image
    if (allocate_image)
    {
        size_t max_width, max_height;

        error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( max_width ), &max_width, NULL );
        test_error_abort( error, "clGetDeviceInfo failed for CL_DEVICE_IMAGE2D_MAX_WIDTH" );

        error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( max_height ), &max_height, NULL );
        test_error_abort( error, "clGetDeviceInfo failed for CL_DEVICE_IMAGE2D_MAX_HEIGHT" );

        cl_ulong max_image2d_size = (cl_ulong)max_height * max_width * 4 * sizeof(cl_uint);

        if( max_individual_allocation_size > max_image2d_size )
        {
            max_individual_allocation_size = max_image2d_size;
        }
    }

    // Pick the baseline size based on whether we are doing a single large or multiple allocations
    g_max_size = g_multiple_allocations ? (size_t)global_mem_size : (size_t)max_individual_allocation_size;

    // Adjust based on the percentage
    if( g_reduction_percentage != 100 )
    {
        log_info( "NOTE: reducing max allocations to %d%%.\n", g_reduction_percentage );
        g_max_size = (size_t)( (double)g_max_size * (double)g_reduction_percentage / 100.0 );
    }

    // Round to nearest MB.
    g_max_size &= (size_t)(0xFFFFFFFFFF00000ULL);

    log_info( "** Target allocation size (rounded to nearest MB) is: %llu bytes (%gMB).\n", llu( g_max_size ), toMB( g_max_size ) );
    log_info( "** Allocating %s to size %gMB.\n", alloc_description[alloc_type], toMB( g_max_size ) );

    for( int count = 0; count < g_repetition_count; count++ )
    {
        current_test_size = g_max_size;
        error = FAILED_TOO_BIG;
        log_info( "  => Allocation %d\n", count + 1 );

        while( ( error == FAILED_TOO_BIG ) && ( current_test_size > g_max_size / 8 ) )
        {
            // Reset our checksum for each allocation
            checksum = 0;

            // Do the allocation
            error = allocate_size( context, &queue, device, g_multiple_allocations, current_test_size, alloc_type,
                                   mems, &number_of_mems_used, &final_size, g_write_allocations, g_seed );

            // If we succeeded and we're supposed to execute a kernel, do so.
            if( error == SUCCEEDED && g_execute_kernel )
            {
                log_info( "\tExecuting kernel with memory objects.\n" );
                error = execute_kernel( context, &queue, device, alloc_type, mems, number_of_mems_used,
                                        g_write_allocations );
            }

            // If we failed to allocate more than 1/8th of the requested amount return a failure.
            if( final_size < (size_t)g_max_size / 8 )
            {
                log_error( "===> Allocation %d failed to allocate more than 1/8th of the requested size.\n", count + 1 );
                failure_counts++;
            }

            // Clean up.
            for( int i = 0; i < number_of_mems_used; i++ )
            {
                clReleaseMemObject( mems[i] );
            }

            if( error == FAILED_ABORT )
            {
                log_error( "  => Allocation %d failed.\n", count + 1 );
                failure_counts++;
            }

            if( error == FAILED_TOO_BIG )
            {
                current_test_size -= g_max_size / 16;
                log_info( "\tFailed at this size; trying a smaller size of %gMB.\n", toMB( current_test_size ) );
            }
        }

        if( error == SUCCEEDED && current_test_size == g_max_size )
        {
            log_info("\tPASS: Allocation succeeded.\n");
        }
        else if( error == SUCCEEDED && current_test_size > g_max_size / 8 )
        {
            log_info("\tPASS: Allocation succeeded at reduced size.\n");
        }
        else
        {
            log_error("\tFAIL: Allocation failed.\n");
            failure_counts++;
        }
    }

    return failure_counts;
}

int test_buffer(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
{
    return doTest( device, context, queue, BUFFER );
}
int test_image2d_read(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
{
    return doTest( device, context, queue, IMAGE_READ );
}
int test_image2d_write(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
{
    return doTest( device, context, queue, IMAGE_WRITE );
}
int test_buffer_non_blocking(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
{
    return doTest( device, context, queue, BUFFER_NON_BLOCKING );
}
int test_image2d_read_non_blocking(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
{
    return doTest( device, context, queue, IMAGE_READ_NON_BLOCKING );
}
int test_image2d_write_non_blocking(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
{
    return doTest( device, context, queue, IMAGE_WRITE_NON_BLOCKING );
}

test_definition test_list[] = {
    ADD_TEST( buffer ),
    ADD_TEST( image2d_read ),
    ADD_TEST( image2d_write ),
    ADD_TEST( buffer_non_blocking ),
    ADD_TEST( image2d_read_non_blocking ),
    ADD_TEST( image2d_write_non_blocking ),
};

const int test_num = ARRAY_SIZE( test_list );

int main(int argc, const char *argv[])
{
    char *endPtr;
    int r;

    argc = parseCustomParam(argc, argv);
    if (argc == -1)
    {
        return 1;
    }

    const char ** argList = (const char **)calloc( argc, sizeof( char*) );

    if( NULL == argList )
    {
        log_error( "Failed to allocate memory for argList array.\n" );
        return 1;
    }

    argList[0] = argv[0];
    size_t argCount = 1;

    // Parse arguments
    for( int i = 1; i < argc; i++ )
    {
        if( strcmp( argv[i], "multiple" ) == 0 )
            g_multiple_allocations = 1;
        else if( strcmp( argv[i], "single" ) == 0 )
            g_multiple_allocations = 0;

        else if( ( r = (int)strtol( argv[i], &endPtr, 10 ) ) && ( endPtr != argv[i] ) && ( *endPtr == 0 ) )
        {
            // By spec, that means the entire string was an integer, so take it as a repetition count
            g_repetition_count = r;
        }

        else if( strchr( argv[i], '%' ) != NULL )
        {
            // Reduction percentage (let strtol ignore the percentage)
            g_reduction_percentage = (int)strtol( argv[i], NULL, 10 );
        }

        else if( strcmp( argv[i], "do_not_force_fill" ) == 0 )
        {
            g_write_allocations = 0;
        }

        else if( strcmp( argv[i], "do_not_execute" ) == 0 )
        {
            g_execute_kernel = 0;
        }

        else if ( strcmp( argv[i], "--help" ) == 0 || strcmp( argv[i], "-h" ) == 0 )
        {
            printUsage( argv[0] );
            free(argList);
            return -1;
        }

        else
        {
            argList[argCount] = argv[i];
            argCount++;
        }
    }

    int ret = runTestHarnessWithCheck( argCount, argList, test_num, test_list, false, 0, init_cl );

    free(argList);
    return ret;
}

void printUsage( const char *execName )
{
    const char *p = strrchr( execName, '/' );
    if( p != NULL )
        execName = p + 1;

    log_info( "Usage: %s [options] [test_names]\n", execName );
    log_info( "Options:\n" );
    log_info( "\trandomize - Uses random seed\n" );
    log_info( "\tsingle - Tests using a single allocation as large as possible\n" );
    log_info( "\tmultiple - Tests using as many allocations as possible\n" );
    log_info( "\n" );
    log_info( "\tnumReps - Optional integer specifying the number of repetitions to run and average the result (defaults to 1)\n" );
    log_info( "\treduction%% - Optional integer, followed by a %% sign, that acts as a multiplier for the target amount of memory.\n" );
    log_info( "\t             Example: target amount of 512MB and a reduction of 75%% will result in a target of 384MB.\n" );
    log_info( "\n" );
    log_info( "\tdo_not_force_fill - Disable explicitly write data to all memory objects after creating them.\n" );
    log_info( "\t                    Without this, the kernel execution can not verify its checksum.\n" );
    log_info( "\tdo_not_execute - Disable executing a kernel that accesses all of the memory objects.\n" );
    log_info( "\n" );
    log_info( "Test names (Allocation Types):\n" );
    for( int i = 0; i < test_num; i++ )
    {
        log_info( "\t%s\n", test_list[i].name );
    }
}