aboutsummaryrefslogtreecommitdiff
path: root/src/utils-vixl.h
blob: 538768690a7e4b4910cafbfe8222f48175dea410 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
// Copyright 2015, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef VIXL_UTILS_H
#define VIXL_UTILS_H

#include <cmath>
#include <cstring>
#include <limits>
#include <vector>

#include "compiler-intrinsics-vixl.h"
#include "globals-vixl.h"

namespace vixl {

// Macros for compile-time format checking.
#if GCC_VERSION_OR_NEWER(4, 4, 0)
#define PRINTF_CHECK(format_index, varargs_index) \
  __attribute__((format(gnu_printf, format_index, varargs_index)))
#else
#define PRINTF_CHECK(format_index, varargs_index)
#endif

#ifdef __GNUC__
#define VIXL_HAS_DEPRECATED_WITH_MSG
#elif defined(__clang__)
#ifdef __has_extension(attribute_deprecated_with_message)
#define VIXL_HAS_DEPRECATED_WITH_MSG
#endif
#endif

#ifdef VIXL_HAS_DEPRECATED_WITH_MSG
#define VIXL_DEPRECATED(replaced_by, declarator) \
  __attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator
#else
#define VIXL_DEPRECATED(replaced_by, declarator) declarator
#endif

#ifdef VIXL_DEBUG
#define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE()
#else
#define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH()
#endif

template <typename T, size_t n>
constexpr size_t ArrayLength(const T (&)[n]) {
  return n;
}

inline uint64_t GetUintMask(unsigned bits) {
  VIXL_ASSERT(bits <= 64);
  uint64_t base = (bits >= 64) ? 0 : (UINT64_C(1) << bits);
  return base - 1;
}

inline uint64_t GetSignMask(unsigned bits) {
  VIXL_ASSERT(bits <= 64);
  return UINT64_C(1) << (bits - 1);
}

// Check number width.
// TODO: Refactor these using templates.
inline bool IsIntN(unsigned n, uint32_t x) {
  VIXL_ASSERT((0 < n) && (n <= 32));
  return x <= static_cast<uint32_t>(INT32_MAX >> (32 - n));
}
inline bool IsIntN(unsigned n, int32_t x) {
  VIXL_ASSERT((0 < n) && (n <= 32));
  if (n == 32) return true;
  int32_t limit = INT32_C(1) << (n - 1);
  return (-limit <= x) && (x < limit);
}
inline bool IsIntN(unsigned n, uint64_t x) {
  VIXL_ASSERT((0 < n) && (n <= 64));
  return x <= static_cast<uint64_t>(INT64_MAX >> (64 - n));
}
inline bool IsIntN(unsigned n, int64_t x) {
  VIXL_ASSERT((0 < n) && (n <= 64));
  if (n == 64) return true;
  int64_t limit = INT64_C(1) << (n - 1);
  return (-limit <= x) && (x < limit);
}
VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) {
  return IsIntN(n, x);
}

inline bool IsUintN(unsigned n, uint32_t x) {
  VIXL_ASSERT((0 < n) && (n <= 32));
  if (n >= 32) return true;
  return !(x >> n);
}
inline bool IsUintN(unsigned n, int32_t x) {
  VIXL_ASSERT((0 < n) && (n < 32));
  // Convert to an unsigned integer to avoid implementation-defined behavior.
  return !(static_cast<uint32_t>(x) >> n);
}
inline bool IsUintN(unsigned n, uint64_t x) {
  VIXL_ASSERT((0 < n) && (n <= 64));
  if (n >= 64) return true;
  return !(x >> n);
}
inline bool IsUintN(unsigned n, int64_t x) {
  VIXL_ASSERT((0 < n) && (n < 64));
  // Convert to an unsigned integer to avoid implementation-defined behavior.
  return !(static_cast<uint64_t>(x) >> n);
}
VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) {
  return IsUintN(n, x);
}

inline uint64_t TruncateToUintN(unsigned n, uint64_t x) {
  VIXL_ASSERT((0 < n) && (n < 64));
  return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1);
}
VIXL_DEPRECATED("TruncateToUintN",
                inline uint64_t truncate_to_intn(unsigned n, int64_t x)) {
  return TruncateToUintN(n, x);
}

// clang-format off
#define INT_1_TO_32_LIST(V)                                                    \
V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)

#define INT_33_TO_63_LIST(V)                                                   \
V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
V(57) V(58) V(59) V(60) V(61) V(62) V(63)

#define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V)

// clang-format on

#define DECLARE_IS_INT_N(N)                                       \
  inline bool IsInt##N(int64_t x) { return IsIntN(N, x); }        \
  VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \
    return IsIntN(N, x);                                          \
  }

#define DECLARE_IS_UINT_N(N)                                        \
  inline bool IsUint##N(int64_t x) { return IsUintN(N, x); }        \
  VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \
    return IsUintN(N, x);                                           \
  }

#define DECLARE_TRUNCATE_TO_UINT_32(N)                             \
  inline uint32_t TruncateToUint##N(uint64_t x) {                  \
    return static_cast<uint32_t>(TruncateToUintN(N, x));           \
  }                                                                \
  VIXL_DEPRECATED("TruncateToUint" #N,                             \
                  inline uint32_t truncate_to_int##N(int64_t x)) { \
    return TruncateToUint##N(x);                                   \
  }

INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32)

#undef DECLARE_IS_INT_N
#undef DECLARE_IS_UINT_N
#undef DECLARE_TRUNCATE_TO_INT_N

// Bit field extraction.
inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) {
  VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
              (msb >= lsb));
  if ((msb == 63) && (lsb == 0)) return x;
  return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
}


inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint64_t x) {
  VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
              (msb >= lsb));
  return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x));
}


inline int64_t ExtractSignedBitfield64(int msb, int lsb, uint64_t x) {
  VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
              (msb >= lsb));
  uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x);
  // If the highest extracted bit is set, sign extend.
  if ((temp >> (msb - lsb)) == 1) {
    temp |= ~UINT64_C(0) << (msb - lsb);
  }
  int64_t result;
  memcpy(&result, &temp, sizeof(result));
  return result;
}

inline int32_t ExtractSignedBitfield32(int msb, int lsb, uint64_t x) {
  VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
              (msb >= lsb));
  uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x));
  int32_t result;
  memcpy(&result, &temp, sizeof(result));
  return result;
}

inline uint64_t RotateRight(uint64_t value,
                            unsigned int rotate,
                            unsigned int width) {
  VIXL_ASSERT((width > 0) && (width <= 64));
  uint64_t width_mask = ~UINT64_C(0) >> (64 - width);
  rotate &= 63;
  if (rotate > 0) {
    value &= width_mask;
    value = (value << (width - rotate)) | (value >> rotate);
  }
  return value & width_mask;
}


// Wrapper class for passing FP16 values through the assembler.
// This is purely to aid with type checking/casting.
class Float16 {
 public:
  explicit Float16(double dvalue);
  Float16() : rawbits_(0x0) {}
  friend uint16_t Float16ToRawbits(Float16 value);
  friend Float16 RawbitsToFloat16(uint16_t bits);

 protected:
  uint16_t rawbits_;
};

// Floating point representation.
uint16_t Float16ToRawbits(Float16 value);


uint32_t FloatToRawbits(float value);
VIXL_DEPRECATED("FloatToRawbits",
                inline uint32_t float_to_rawbits(float value)) {
  return FloatToRawbits(value);
}

uint64_t DoubleToRawbits(double value);
VIXL_DEPRECATED("DoubleToRawbits",
                inline uint64_t double_to_rawbits(double value)) {
  return DoubleToRawbits(value);
}

Float16 RawbitsToFloat16(uint16_t bits);

float RawbitsToFloat(uint32_t bits);
VIXL_DEPRECATED("RawbitsToFloat",
                inline float rawbits_to_float(uint32_t bits)) {
  return RawbitsToFloat(bits);
}

double RawbitsToDouble(uint64_t bits);
VIXL_DEPRECATED("RawbitsToDouble",
                inline double rawbits_to_double(uint64_t bits)) {
  return RawbitsToDouble(bits);
}

// Convert unsigned to signed numbers in a well-defined way (using two's
// complement representations).
inline int64_t RawbitsToInt64(uint64_t bits) {
  return (bits >= UINT64_C(0x8000000000000000))
             ? (-static_cast<int64_t>(-bits - 1) - 1)
             : static_cast<int64_t>(bits);
}

inline int32_t RawbitsToInt32(uint32_t bits) {
  return (bits >= UINT64_C(0x80000000)) ? (-static_cast<int32_t>(-bits - 1) - 1)
                                        : static_cast<int32_t>(bits);
}

namespace internal {

// Internal simulation class used solely by the simulator to
// provide an abstraction layer for any half-precision arithmetic.
class SimFloat16 : public Float16 {
 public:
  // TODO: We should investigate making this constructor explicit.
  // This is currently difficult to do due to a number of templated
  // functions in the simulator which rely on returning double values.
  SimFloat16(double dvalue) : Float16(dvalue) {}  // NOLINT(runtime/explicit)
  SimFloat16(Float16 f) {                         // NOLINT(runtime/explicit)
    this->rawbits_ = Float16ToRawbits(f);
  }
  SimFloat16() : Float16() {}
  SimFloat16 operator-() const;
  SimFloat16 operator+(SimFloat16 rhs) const;
  SimFloat16 operator-(SimFloat16 rhs) const;
  SimFloat16 operator*(SimFloat16 rhs) const;
  SimFloat16 operator/(SimFloat16 rhs) const;
  bool operator<(SimFloat16 rhs) const;
  bool operator>(SimFloat16 rhs) const;
  bool operator==(SimFloat16 rhs) const;
  bool operator!=(SimFloat16 rhs) const;
  // This is necessary for conversions peformed in (macro asm) Fmov.
  bool operator==(double rhs) const;
  operator double() const;
};
}  // namespace internal

uint32_t Float16Sign(internal::SimFloat16 value);

uint32_t Float16Exp(internal::SimFloat16 value);

uint32_t Float16Mantissa(internal::SimFloat16 value);

uint32_t FloatSign(float value);
VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) {
  return FloatSign(value);
}

uint32_t FloatExp(float value);
VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) {
  return FloatExp(value);
}

uint32_t FloatMantissa(float value);
VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) {
  return FloatMantissa(value);
}

uint32_t DoubleSign(double value);
VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) {
  return DoubleSign(value);
}

uint32_t DoubleExp(double value);
VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) {
  return DoubleExp(value);
}

uint64_t DoubleMantissa(double value);
VIXL_DEPRECATED("DoubleMantissa",
                inline uint64_t double_mantissa(double value)) {
  return DoubleMantissa(value);
}

internal::SimFloat16 Float16Pack(uint16_t sign,
                                 uint16_t exp,
                                 uint16_t mantissa);

float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa);
VIXL_DEPRECATED("FloatPack",
                inline float float_pack(uint32_t sign,
                                        uint32_t exp,
                                        uint32_t mantissa)) {
  return FloatPack(sign, exp, mantissa);
}

double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa);
VIXL_DEPRECATED("DoublePack",
                inline double double_pack(uint32_t sign,
                                          uint32_t exp,
                                          uint64_t mantissa)) {
  return DoublePack(sign, exp, mantissa);
}

// An fpclassify() function for 16-bit half-precision floats.
int Float16Classify(Float16 value);
VIXL_DEPRECATED("Float16Classify", inline int float16classify(uint16_t value)) {
  return Float16Classify(RawbitsToFloat16(value));
}

bool IsZero(Float16 value);

inline bool IsPositiveZero(double value) {
  return (value == 0.0) && (copysign(1.0, value) > 0.0);
}

inline bool IsNaN(float value) { return std::isnan(value); }

inline bool IsNaN(double value) { return std::isnan(value); }

inline bool IsNaN(Float16 value) { return Float16Classify(value) == FP_NAN; }

inline bool IsInf(float value) { return std::isinf(value); }

inline bool IsInf(double value) { return std::isinf(value); }

inline bool IsInf(Float16 value) {
  return Float16Classify(value) == FP_INFINITE;
}


// NaN tests.
inline bool IsSignallingNaN(double num) {
  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
  uint64_t raw = DoubleToRawbits(num);
  if (IsNaN(num) && ((raw & kFP64QuietNaNMask) == 0)) {
    return true;
  }
  return false;
}


inline bool IsSignallingNaN(float num) {
  const uint32_t kFP32QuietNaNMask = 0x00400000;
  uint32_t raw = FloatToRawbits(num);
  if (IsNaN(num) && ((raw & kFP32QuietNaNMask) == 0)) {
    return true;
  }
  return false;
}


inline bool IsSignallingNaN(Float16 num) {
  const uint16_t kFP16QuietNaNMask = 0x0200;
  return IsNaN(num) && ((Float16ToRawbits(num) & kFP16QuietNaNMask) == 0);
}


template <typename T>
inline bool IsQuietNaN(T num) {
  return IsNaN(num) && !IsSignallingNaN(num);
}


// Convert the NaN in 'num' to a quiet NaN.
inline double ToQuietNaN(double num) {
  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
  VIXL_ASSERT(IsNaN(num));
  return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask);
}


inline float ToQuietNaN(float num) {
  const uint32_t kFP32QuietNaNMask = 0x00400000;
  VIXL_ASSERT(IsNaN(num));
  return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask);
}


inline internal::SimFloat16 ToQuietNaN(internal::SimFloat16 num) {
  const uint16_t kFP16QuietNaNMask = 0x0200;
  VIXL_ASSERT(IsNaN(num));
  return internal::SimFloat16(
      RawbitsToFloat16(Float16ToRawbits(num) | kFP16QuietNaNMask));
}


// Fused multiply-add.
inline double FusedMultiplyAdd(double op1, double op2, double a) {
  return fma(op1, op2, a);
}


inline float FusedMultiplyAdd(float op1, float op2, float a) {
  return fmaf(op1, op2, a);
}


inline uint64_t LowestSetBit(uint64_t value) { return value & -value; }


template <typename T>
inline int HighestSetBitPosition(T value) {
  VIXL_ASSERT(value != 0);
  return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
}


template <typename V>
inline int WhichPowerOf2(V value) {
  VIXL_ASSERT(IsPowerOf2(value));
  return CountTrailingZeros(value);
}


unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);


int BitCount(uint64_t value);


template <typename T>
T ReverseBits(T value) {
  VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
              (sizeof(value) == 4) || (sizeof(value) == 8));
  T result = 0;
  for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
    result = (result << 1) | (value & 1);
    value >>= 1;
  }
  return result;
}


template <typename T>
inline T SignExtend(T val, int size_in_bits) {
  VIXL_ASSERT(size_in_bits > 0);
  T mask = (T(2) << (size_in_bits - 1)) - T(1);
  val &= mask;
  T sign_bits = -((val >> (size_in_bits - 1)) << size_in_bits);
  val |= sign_bits;
  return val;
}


template <typename T>
T ReverseBytes(T value, int block_bytes_log2) {
  VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
  VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
  // Split the 64-bit value into an 8-bit array, where b[0] is the least
  // significant byte, and b[7] is the most significant.
  uint8_t bytes[8];
  uint64_t mask = UINT64_C(0xff00000000000000);
  for (int i = 7; i >= 0; i--) {
    bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
    mask >>= 8;
  }

  // Permutation tables for REV instructions.
  //  permute_table[0] is used by REV16_x, REV16_w
  //  permute_table[1] is used by REV32_x, REV_w
  //  permute_table[2] is used by REV_x
  VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
  static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
                                              {4, 5, 6, 7, 0, 1, 2, 3},
                                              {0, 1, 2, 3, 4, 5, 6, 7}};
  uint64_t temp = 0;
  for (int i = 0; i < 8; i++) {
    temp <<= 8;
    temp |= bytes[permute_table[block_bytes_log2 - 1][i]];
  }

  T result;
  VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp));
  memcpy(&result, &temp, sizeof(result));
  return result;
}

template <unsigned MULTIPLE, typename T>
inline bool IsMultiple(T value) {
  VIXL_ASSERT(IsPowerOf2(MULTIPLE));
  return (value & (MULTIPLE - 1)) == 0;
}

template <typename T>
inline bool IsMultiple(T value, unsigned multiple) {
  VIXL_ASSERT(IsPowerOf2(multiple));
  return (value & (multiple - 1)) == 0;
}

template <typename T>
inline bool IsAligned(T pointer, int alignment) {
  VIXL_ASSERT(IsPowerOf2(alignment));
  return (pointer & (alignment - 1)) == 0;
}

// Pointer alignment
// TODO: rename/refactor to make it specific to instructions.
template <unsigned ALIGN, typename T>
inline bool IsAligned(T pointer) {
  VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));  // NOLINT(runtime/sizeof)
  // Use C-style casts to get static_cast behaviour for integral types (T), and
  // reinterpret_cast behaviour for other types.
  return IsAligned((intptr_t)(pointer), ALIGN);
}

template <typename T>
bool IsWordAligned(T pointer) {
  return IsAligned<4>(pointer);
}

// Increment a pointer until it has the specified alignment. The alignment must
// be a power of two.
template <class T>
T AlignUp(T pointer,
          typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
  VIXL_ASSERT(IsPowerOf2(alignment));
  // Use C-style casts to get static_cast behaviour for integral types (T), and
  // reinterpret_cast behaviour for other types.

  typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
      (typename Unsigned<sizeof(T) * kBitsPerByte>::type) pointer;
  VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));

  size_t mask = alignment - 1;
  T result = (T)((pointer_raw + mask) & ~mask);
  VIXL_ASSERT(result >= pointer);

  return result;
}

// Decrement a pointer until it has the specified alignment. The alignment must
// be a power of two.
template <class T>
T AlignDown(T pointer,
            typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
  VIXL_ASSERT(IsPowerOf2(alignment));
  // Use C-style casts to get static_cast behaviour for integral types (T), and
  // reinterpret_cast behaviour for other types.

  typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
      (typename Unsigned<sizeof(T) * kBitsPerByte>::type) pointer;
  VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));

  size_t mask = alignment - 1;
  return (T)(pointer_raw & ~mask);
}


template <typename T>
inline T ExtractBit(T value, unsigned bit) {
  return (value >> bit) & T(1);
}

template <typename Ts, typename Td>
inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) {
  return Td((value >> least_significant_bit) & Ts(mask));
}

template <typename Ts, typename Td>
inline void AssignBit(Td& dst,  // NOLINT(runtime/references)
                      int bit,
                      Ts value) {
  VIXL_ASSERT((value == Ts(0)) || (value == Ts(1)));
  VIXL_ASSERT(bit >= 0);
  VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8));
  Td mask(1);
  dst &= ~(mask << bit);
  dst |= Td(value) << bit;
}

template <typename Td, typename Ts>
inline void AssignBits(Td& dst,  // NOLINT(runtime/references)
                       int least_significant_bit,
                       Ts mask,
                       Ts value) {
  VIXL_ASSERT(least_significant_bit >= 0);
  VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8));
  VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) ==
              Td(mask));
  VIXL_ASSERT((value & mask) == value);
  dst &= ~(Td(mask) << least_significant_bit);
  dst |= Td(value) << least_significant_bit;
}

class VFP {
 public:
  static uint32_t FP32ToImm8(float imm) {
    // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
    uint32_t bits = FloatToRawbits(imm);
    // bit7: a000.0000
    uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
    // bit6: 0b00.0000
    uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
    // bit5_to_0: 00cd.efgh
    uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
    return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
  }
  static uint32_t FP64ToImm8(double imm) {
    // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    //       0000.0000.0000.0000.0000.0000.0000.0000
    uint64_t bits = DoubleToRawbits(imm);
    // bit7: a000.0000
    uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
    // bit6: 0b00.0000
    uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
    // bit5_to_0: 00cd.efgh
    uint64_t bit5_to_0 = (bits >> 48) & 0x3f;

    return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
  }
  static float Imm8ToFP32(uint32_t imm8) {
    //   Imm8: abcdefgh (8 bits)
    // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
    // where B is b ^ 1
    uint32_t bits = imm8;
    uint32_t bit7 = (bits >> 7) & 0x1;
    uint32_t bit6 = (bits >> 6) & 0x1;
    uint32_t bit5_to_0 = bits & 0x3f;
    uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);

    return RawbitsToFloat(result);
  }
  static double Imm8ToFP64(uint32_t imm8) {
    //   Imm8: abcdefgh (8 bits)
    // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
    // where B is b ^ 1
    uint32_t bits = imm8;
    uint64_t bit7 = (bits >> 7) & 0x1;
    uint64_t bit6 = (bits >> 6) & 0x1;
    uint64_t bit5_to_0 = bits & 0x3f;
    uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
    return RawbitsToDouble(result);
  }
  static bool IsImmFP32(float imm) {
    // Valid values will have the form:
    // aBbb.bbbc.defg.h000.0000.0000.0000.0000
    uint32_t bits = FloatToRawbits(imm);
    // bits[19..0] are cleared.
    if ((bits & 0x7ffff) != 0) {
      return false;
    }


    // bits[29..25] are all set or all cleared.
    uint32_t b_pattern = (bits >> 16) & 0x3e00;
    if (b_pattern != 0 && b_pattern != 0x3e00) {
      return false;
    }
    // bit[30] and bit[29] are opposite.
    if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
      return false;
    }
    return true;
  }
  static bool IsImmFP64(double imm) {
    // Valid values will have the form:
    // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    // 0000.0000.0000.0000.0000.0000.0000.0000
    uint64_t bits = DoubleToRawbits(imm);
    // bits[47..0] are cleared.
    if ((bits & 0x0000ffffffffffff) != 0) {
      return false;
    }
    // bits[61..54] are all set or all cleared.
    uint32_t b_pattern = (bits >> 48) & 0x3fc0;
    if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
      return false;
    }
    // bit[62] and bit[61] are opposite.
    if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
      return false;
    }
    return true;
  }
};

class BitField {
  // ForEachBitHelper is a functor that will call
  // bool ForEachBitHelper::execute(ElementType id) const
  //   and expects a boolean in return whether to continue (if true)
  //   or stop (if false)
  // check_set will check if the bits are on (true) or off(false)
  template <typename ForEachBitHelper, bool check_set>
  bool ForEachBit(const ForEachBitHelper& helper) {
    for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) {
      if (bitfield_[i] == check_set)
        if (!helper.execute(i)) return false;
    }
    return true;
  }

 public:
  explicit BitField(unsigned size) : bitfield_(size, 0) {}

  void Set(int i) {
    VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
    bitfield_[i] = true;
  }

  void Unset(int i) {
    VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
    bitfield_[i] = true;
  }

  bool IsSet(int i) const { return bitfield_[i]; }

  // For each bit not set in the bitfield call the execute functor
  // execute.
  // ForEachBitSetHelper::execute returns true if the iteration through
  // the bits can continue, otherwise it will stop.
  // struct ForEachBitSetHelper {
  //   bool execute(int /*id*/) { return false; }
  // };
  template <typename ForEachBitNotSetHelper>
  bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) {
    return ForEachBit<ForEachBitNotSetHelper, false>(helper);
  }

  // For each bit set in the bitfield call the execute functor
  // execute.
  template <typename ForEachBitSetHelper>
  bool ForEachBitSet(const ForEachBitSetHelper& helper) {
    return ForEachBit<ForEachBitSetHelper, true>(helper);
  }

 private:
  std::vector<bool> bitfield_;
};

namespace internal {

typedef int64_t Int64;
class Uint64;
class Uint128;

class Uint32 {
  uint32_t data_;

 public:
  // Unlike uint32_t, Uint32 has a default constructor.
  Uint32() { data_ = 0; }
  explicit Uint32(uint32_t data) : data_(data) {}
  inline explicit Uint32(Uint64 data);
  uint32_t Get() const { return data_; }
  template <int N>
  int32_t GetSigned() const {
    return ExtractSignedBitfield32(N - 1, 0, data_);
  }
  int32_t GetSigned() const { return data_; }
  Uint32 operator~() const { return Uint32(~data_); }
  Uint32 operator-() const { return Uint32(-data_); }
  bool operator==(Uint32 value) const { return data_ == value.data_; }
  bool operator!=(Uint32 value) const { return data_ != value.data_; }
  bool operator>(Uint32 value) const { return data_ > value.data_; }
  Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); }
  Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); }
  Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); }
  Uint32 operator&=(Uint32 value) {
    data_ &= value.data_;
    return *this;
  }
  Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); }
  Uint32 operator^=(Uint32 value) {
    data_ ^= value.data_;
    return *this;
  }
  Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); }
  Uint32 operator|=(Uint32 value) {
    data_ |= value.data_;
    return *this;
  }
  // Unlike uint32_t, the shift functions can accept negative shift and
  // return 0 when the shift is too big.
  Uint32 operator>>(int shift) const {
    if (shift == 0) return *this;
    if (shift < 0) {
      int tmp = -shift;
      if (tmp >= 32) return Uint32(0);
      return Uint32(data_ << tmp);
    }
    int tmp = shift;
    if (tmp >= 32) return Uint32(0);
    return Uint32(data_ >> tmp);
  }
  Uint32 operator<<(int shift) const {
    if (shift == 0) return *this;
    if (shift < 0) {
      int tmp = -shift;
      if (tmp >= 32) return Uint32(0);
      return Uint32(data_ >> tmp);
    }
    int tmp = shift;
    if (tmp >= 32) return Uint32(0);
    return Uint32(data_ << tmp);
  }
};

class Uint64 {
  uint64_t data_;

 public:
  // Unlike uint64_t, Uint64 has a default constructor.
  Uint64() { data_ = 0; }
  explicit Uint64(uint64_t data) : data_(data) {}
  explicit Uint64(Uint32 data) : data_(data.Get()) {}
  inline explicit Uint64(Uint128 data);
  uint64_t Get() const { return data_; }
  int64_t GetSigned(int N) const {
    return ExtractSignedBitfield64(N - 1, 0, data_);
  }
  int64_t GetSigned() const { return data_; }
  Uint32 ToUint32() const {
    VIXL_ASSERT((data_ >> 32) == 0);
    return Uint32(static_cast<uint32_t>(data_));
  }
  Uint32 GetHigh32() const { return Uint32(data_ >> 32); }
  Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); }
  Uint64 operator~() const { return Uint64(~data_); }
  Uint64 operator-() const { return Uint64(-data_); }
  bool operator==(Uint64 value) const { return data_ == value.data_; }
  bool operator!=(Uint64 value) const { return data_ != value.data_; }
  Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); }
  Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); }
  Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); }
  Uint64 operator&=(Uint64 value) {
    data_ &= value.data_;
    return *this;
  }
  Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); }
  Uint64 operator^=(Uint64 value) {
    data_ ^= value.data_;
    return *this;
  }
  Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); }
  Uint64 operator|=(Uint64 value) {
    data_ |= value.data_;
    return *this;
  }
  // Unlike uint64_t, the shift functions can accept negative shift and
  // return 0 when the shift is too big.
  Uint64 operator>>(int shift) const {
    if (shift == 0) return *this;
    if (shift < 0) {
      int tmp = -shift;
      if (tmp >= 64) return Uint64(0);
      return Uint64(data_ << tmp);
    }
    int tmp = shift;
    if (tmp >= 64) return Uint64(0);
    return Uint64(data_ >> tmp);
  }
  Uint64 operator<<(int shift) const {
    if (shift == 0) return *this;
    if (shift < 0) {
      int tmp = -shift;
      if (tmp >= 64) return Uint64(0);
      return Uint64(data_ >> tmp);
    }
    int tmp = shift;
    if (tmp >= 64) return Uint64(0);
    return Uint64(data_ << tmp);
  }
};

class Uint128 {
  uint64_t data_high_;
  uint64_t data_low_;

 public:
  Uint128() : data_high_(0), data_low_(0) {}
  explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {}
  explicit Uint128(Uint64 data_low)
      : data_high_(0), data_low_(data_low.Get()) {}
  Uint128(uint64_t data_high, uint64_t data_low)
      : data_high_(data_high), data_low_(data_low) {}
  Uint64 ToUint64() const {
    VIXL_ASSERT(data_high_ == 0);
    return Uint64(data_low_);
  }
  Uint64 GetHigh64() const { return Uint64(data_high_); }
  Uint64 GetLow64() const { return Uint64(data_low_); }
  Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); }
  bool operator==(Uint128 value) const {
    return (data_high_ == value.data_high_) && (data_low_ == value.data_low_);
  }
  Uint128 operator&(Uint128 value) const {
    return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_);
  }
  Uint128 operator&=(Uint128 value) {
    data_high_ &= value.data_high_;
    data_low_ &= value.data_low_;
    return *this;
  }
  Uint128 operator|=(Uint128 value) {
    data_high_ |= value.data_high_;
    data_low_ |= value.data_low_;
    return *this;
  }
  Uint128 operator>>(int shift) const {
    VIXL_ASSERT((shift >= 0) && (shift < 128));
    if (shift == 0) return *this;
    if (shift >= 64) {
      return Uint128(0, data_high_ >> (shift - 64));
    }
    uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift);
    return Uint128(data_high_ >> shift, tmp);
  }
  Uint128 operator<<(int shift) const {
    VIXL_ASSERT((shift >= 0) && (shift < 128));
    if (shift == 0) return *this;
    if (shift >= 64) {
      return Uint128(data_low_ << (shift - 64), 0);
    }
    uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift));
    return Uint128(tmp, data_low_ << shift);
  }
};

Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {}
Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {}

Int64 BitCount(Uint32 value);

// The algorithm used is adapted from the one described in section 8.2 of
// Hacker's Delight, by Henry S. Warren, Jr.
template <unsigned N, typename T>
int64_t MultiplyHigh(T u, T v) {
  uint64_t u0, v0, w0, u1, v1, w1, w2, t;
  VIXL_STATIC_ASSERT((N == 8) || (N == 16) || (N == 32) || (N == 64));
  uint64_t sign_mask = UINT64_C(1) << (N - 1);
  uint64_t sign_ext = 0;
  unsigned half_bits = N / 2;
  uint64_t half_mask = GetUintMask(half_bits);
  if (std::numeric_limits<T>::is_signed) {
    sign_ext = UINT64_C(0xffffffffffffffff) << half_bits;
  }

  VIXL_ASSERT(sizeof(u) == sizeof(uint64_t));
  VIXL_ASSERT(sizeof(u) == sizeof(u0));

  u0 = u & half_mask;
  u1 = u >> half_bits | (((u & sign_mask) != 0) ? sign_ext : 0);
  v0 = v & half_mask;
  v1 = v >> half_bits | (((v & sign_mask) != 0) ? sign_ext : 0);

  w0 = u0 * v0;
  t = u1 * v0 + (w0 >> half_bits);

  w1 = t & half_mask;
  w2 = t >> half_bits | (((t & sign_mask) != 0) ? sign_ext : 0);
  w1 = u0 * v1 + w1;
  w1 = w1 >> half_bits | (((w1 & sign_mask) != 0) ? sign_ext : 0);

  uint64_t value = u1 * v1 + w2 + w1;
  int64_t result;
  memcpy(&result, &value, sizeof(result));
  return result;
}

}  // namespace internal

// The default NaN values (for FPCR.DN=1).
extern const double kFP64DefaultNaN;
extern const float kFP32DefaultNaN;
extern const Float16 kFP16DefaultNaN;

// Floating-point infinity values.
extern const Float16 kFP16PositiveInfinity;
extern const Float16 kFP16NegativeInfinity;
extern const float kFP32PositiveInfinity;
extern const float kFP32NegativeInfinity;
extern const double kFP64PositiveInfinity;
extern const double kFP64NegativeInfinity;

// Floating-point zero values.
extern const Float16 kFP16PositiveZero;
extern const Float16 kFP16NegativeZero;

// AArch64 floating-point specifics. These match IEEE-754.
const unsigned kDoubleMantissaBits = 52;
const unsigned kDoubleExponentBits = 11;
const unsigned kFloatMantissaBits = 23;
const unsigned kFloatExponentBits = 8;
const unsigned kFloat16MantissaBits = 10;
const unsigned kFloat16ExponentBits = 5;

enum FPRounding {
  // The first four values are encodable directly by FPCR<RMode>.
  FPTieEven = 0x0,
  FPPositiveInfinity = 0x1,
  FPNegativeInfinity = 0x2,
  FPZero = 0x3,

  // The final rounding modes are only available when explicitly specified by
  // the instruction (such as with fcvta). It cannot be set in FPCR.
  FPTieAway,
  FPRoundOdd
};

enum UseDefaultNaN { kUseDefaultNaN, kIgnoreDefaultNaN };

// Assemble the specified IEEE-754 components into the target type and apply
// appropriate rounding.
//  sign:     0 = positive, 1 = negative
//  exponent: Unbiased IEEE-754 exponent.
//  mantissa: The mantissa of the input. The top bit (which is not encoded for
//            normal IEEE-754 values) must not be omitted. This bit has the
//            value 'pow(2, exponent)'.
//
// The input value is assumed to be a normalized value. That is, the input may
// not be infinity or NaN. If the source value is subnormal, it must be
// normalized before calling this function such that the highest set bit in the
// mantissa has the value 'pow(2, exponent)'.
//
// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
// calling a templated FPRound.
template <class T, int ebits, int mbits>
T FPRound(int64_t sign,
          int64_t exponent,
          uint64_t mantissa,
          FPRounding round_mode) {
  VIXL_ASSERT((sign == 0) || (sign == 1));

  // Only FPTieEven and FPRoundOdd rounding modes are implemented.
  VIXL_ASSERT((round_mode == FPTieEven) || (round_mode == FPRoundOdd));

  // Rounding can promote subnormals to normals, and normals to infinities. For
  // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
  // encodable as a float, but rounding based on the low-order mantissa bits
  // could make it overflow. With ties-to-even rounding, this value would become
  // an infinity.

  // ---- Rounding Method ----
  //
  // The exponent is irrelevant in the rounding operation, so we treat the
  // lowest-order bit that will fit into the result ('onebit') as having
  // the value '1'. Similarly, the highest-order bit that won't fit into
  // the result ('halfbit') has the value '0.5'. The 'point' sits between
  // 'onebit' and 'halfbit':
  //
  //            These bits fit into the result.
  //               |---------------------|
  //  mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
  //                                     ||
  //                                    / |
  //                                   /  halfbit
  //                               onebit
  //
  // For subnormal outputs, the range of representable bits is smaller and
  // the position of onebit and halfbit depends on the exponent of the
  // input, but the method is otherwise similar.
  //
  //   onebit(frac)
  //     |
  //     | halfbit(frac)          halfbit(adjusted)
  //     | /                      /
  //     | |                      |
  //  0b00.0 (exact)      -> 0b00.0 (exact)                    -> 0b00
  //  0b00.0...           -> 0b00.0...                         -> 0b00
  //  0b00.1 (exact)      -> 0b00.0111..111                    -> 0b00
  //  0b00.1...           -> 0b00.1...                         -> 0b01
  //  0b01.0 (exact)      -> 0b01.0 (exact)                    -> 0b01
  //  0b01.0...           -> 0b01.0...                         -> 0b01
  //  0b01.1 (exact)      -> 0b01.1 (exact)                    -> 0b10
  //  0b01.1...           -> 0b01.1...                         -> 0b10
  //  0b10.0 (exact)      -> 0b10.0 (exact)                    -> 0b10
  //  0b10.0...           -> 0b10.0...                         -> 0b10
  //  0b10.1 (exact)      -> 0b10.0111..111                    -> 0b10
  //  0b10.1...           -> 0b10.1...                         -> 0b11
  //  0b11.0 (exact)      -> 0b11.0 (exact)                    -> 0b11
  //  ...                   /             |                      /   |
  //                       /              |                     /    |
  //                                                           /     |
  // adjusted = frac - (halfbit(mantissa) & ~onebit(frac));   /      |
  //
  //                   mantissa = (mantissa >> shift) + halfbit(adjusted);

  static const int mantissa_offset = 0;
  static const int exponent_offset = mantissa_offset + mbits;
  static const int sign_offset = exponent_offset + ebits;
  VIXL_ASSERT(sign_offset == (sizeof(T) * 8 - 1));

  // Bail out early for zero inputs.
  if (mantissa == 0) {
    return static_cast<T>(sign << sign_offset);
  }

  // If all bits in the exponent are set, the value is infinite or NaN.
  // This is true for all binary IEEE-754 formats.
  static const int infinite_exponent = (1 << ebits) - 1;
  static const int max_normal_exponent = infinite_exponent - 1;

  // Apply the exponent bias to encode it for the result. Doing this early makes
  // it easy to detect values that will be infinite or subnormal.
  exponent += max_normal_exponent >> 1;

  if (exponent > max_normal_exponent) {
    // Overflow: the input is too large for the result type to represent.
    if (round_mode == FPTieEven) {
      // FPTieEven rounding mode handles overflows using infinities.
      exponent = infinite_exponent;
      mantissa = 0;
    } else {
      VIXL_ASSERT(round_mode == FPRoundOdd);
      // FPRoundOdd rounding mode handles overflows using the largest magnitude
      // normal number.
      exponent = max_normal_exponent;
      mantissa = (UINT64_C(1) << exponent_offset) - 1;
    }
    return static_cast<T>((sign << sign_offset) |
                          (exponent << exponent_offset) |
                          (mantissa << mantissa_offset));
  }

  // Calculate the shift required to move the top mantissa bit to the proper
  // place in the destination type.
  const int highest_significant_bit = 63 - CountLeadingZeros(mantissa);
  int shift = highest_significant_bit - mbits;

  if (exponent <= 0) {
    // The output will be subnormal (before rounding).
    // For subnormal outputs, the shift must be adjusted by the exponent. The +1
    // is necessary because the exponent of a subnormal value (encoded as 0) is
    // the same as the exponent of the smallest normal value (encoded as 1).
    shift += -exponent + 1;

    // Handle inputs that would produce a zero output.
    //
    // Shifts higher than highest_significant_bit+1 will always produce a zero
    // result. A shift of exactly highest_significant_bit+1 might produce a
    // non-zero result after rounding.
    if (shift > (highest_significant_bit + 1)) {
      if (round_mode == FPTieEven) {
        // The result will always be +/-0.0.
        return static_cast<T>(sign << sign_offset);
      } else {
        VIXL_ASSERT(round_mode == FPRoundOdd);
        VIXL_ASSERT(mantissa != 0);
        // For FPRoundOdd, if the mantissa is too small to represent and
        // non-zero return the next "odd" value.
        return static_cast<T>((sign << sign_offset) | 1);
      }
    }

    // Properly encode the exponent for a subnormal output.
    exponent = 0;
  } else {
    // Clear the topmost mantissa bit, since this is not encoded in IEEE-754
    // normal values.
    mantissa &= ~(UINT64_C(1) << highest_significant_bit);
  }

  // The casts below are only well-defined for unsigned integers.
  VIXL_STATIC_ASSERT(std::numeric_limits<T>::is_integer);
  VIXL_STATIC_ASSERT(!std::numeric_limits<T>::is_signed);

  if (shift > 0) {
    if (round_mode == FPTieEven) {
      // We have to shift the mantissa to the right. Some precision is lost, so
      // we need to apply rounding.
      uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
      uint64_t halfbit_mantissa = (mantissa >> (shift - 1)) & 1;
      uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa);
      uint64_t adjusted = mantissa - adjustment;
      T halfbit_adjusted = (adjusted >> (shift - 1)) & 1;

      T result =
          static_cast<T>((sign << sign_offset) | (exponent << exponent_offset) |
                         ((mantissa >> shift) << mantissa_offset));

      // A very large mantissa can overflow during rounding. If this happens,
      // the exponent should be incremented and the mantissa set to 1.0
      // (encoded as 0). Applying halfbit_adjusted after assembling the float
      // has the nice side-effect that this case is handled for free.
      //
      // This also handles cases where a very large finite value overflows to
      // infinity, or where a very large subnormal value overflows to become
      // normal.
      return result + halfbit_adjusted;
    } else {
      VIXL_ASSERT(round_mode == FPRoundOdd);
      // If any bits at position halfbit or below are set, onebit (ie. the
      // bottom bit of the resulting mantissa) must be set.
      uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1);
      if (fractional_bits != 0) {
        mantissa |= UINT64_C(1) << shift;
      }

      return static_cast<T>((sign << sign_offset) |
                            (exponent << exponent_offset) |
                            ((mantissa >> shift) << mantissa_offset));
    }
  } else {
    // We have to shift the mantissa to the left (or not at all). The input
    // mantissa is exactly representable in the output mantissa, so apply no
    // rounding correction.
    return static_cast<T>((sign << sign_offset) |
                          (exponent << exponent_offset) |
                          ((mantissa << -shift) << mantissa_offset));
  }
}


// See FPRound for a description of this function.
inline double FPRoundToDouble(int64_t sign,
                              int64_t exponent,
                              uint64_t mantissa,
                              FPRounding round_mode) {
  uint64_t bits =
      FPRound<uint64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
                                                                  exponent,
                                                                  mantissa,
                                                                  round_mode);
  return RawbitsToDouble(bits);
}


// See FPRound for a description of this function.
inline Float16 FPRoundToFloat16(int64_t sign,
                                int64_t exponent,
                                uint64_t mantissa,
                                FPRounding round_mode) {
  return RawbitsToFloat16(
      FPRound<uint16_t, kFloat16ExponentBits, kFloat16MantissaBits>(
          sign, exponent, mantissa, round_mode));
}


// See FPRound for a description of this function.
static inline float FPRoundToFloat(int64_t sign,
                                   int64_t exponent,
                                   uint64_t mantissa,
                                   FPRounding round_mode) {
  uint32_t bits =
      FPRound<uint32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
                                                                exponent,
                                                                mantissa,
                                                                round_mode);
  return RawbitsToFloat(bits);
}


float FPToFloat(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
float FPToFloat(double value,
                FPRounding round_mode,
                UseDefaultNaN DN,
                bool* exception = NULL);

double FPToDouble(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
double FPToDouble(float value, UseDefaultNaN DN, bool* exception = NULL);

Float16 FPToFloat16(float value,
                    FPRounding round_mode,
                    UseDefaultNaN DN,
                    bool* exception = NULL);

Float16 FPToFloat16(double value,
                    FPRounding round_mode,
                    UseDefaultNaN DN,
                    bool* exception = NULL);

// Like static_cast<T>(value), but with specialisations for the Float16 type.
template <typename T, typename F>
T StaticCastFPTo(F value) {
  return static_cast<T>(value);
}

template <>
inline float StaticCastFPTo<float, Float16>(Float16 value) {
  return FPToFloat(value, kIgnoreDefaultNaN);
}

template <>
inline double StaticCastFPTo<double, Float16>(Float16 value) {
  return FPToDouble(value, kIgnoreDefaultNaN);
}

template <>
inline Float16 StaticCastFPTo<Float16, float>(float value) {
  return FPToFloat16(value, FPTieEven, kIgnoreDefaultNaN);
}

template <>
inline Float16 StaticCastFPTo<Float16, double>(double value) {
  return FPToFloat16(value, FPTieEven, kIgnoreDefaultNaN);
}

template <typename T>
uint64_t FPToRawbitsWithSize(unsigned size_in_bits, T value) {
  switch (size_in_bits) {
    case 16:
      return Float16ToRawbits(StaticCastFPTo<Float16>(value));
    case 32:
      return FloatToRawbits(StaticCastFPTo<float>(value));
    case 64:
      return DoubleToRawbits(StaticCastFPTo<double>(value));
  }
  VIXL_UNREACHABLE();
  return 0;
}

template <typename T>
T RawbitsWithSizeToFP(unsigned size_in_bits, uint64_t value) {
  VIXL_ASSERT(IsUintN(size_in_bits, value));
  switch (size_in_bits) {
    case 16:
      return StaticCastFPTo<T>(RawbitsToFloat16(static_cast<uint16_t>(value)));
    case 32:
      return StaticCastFPTo<T>(RawbitsToFloat(static_cast<uint32_t>(value)));
    case 64:
      return StaticCastFPTo<T>(RawbitsToDouble(value));
  }
  VIXL_UNREACHABLE();
  return 0;
}

// Jenkins one-at-a-time hash, based on
// https://en.wikipedia.org/wiki/Jenkins_hash_function citing
// https://www.drdobbs.com/database/algorithm-alley/184410284.
constexpr uint32_t Hash(const char* str, uint32_t hash = 0) {
  if (*str == '\0') {
    hash += hash << 3;
    hash ^= hash >> 11;
    hash += hash << 15;
    return hash;
  } else {
    hash += *str;
    hash += hash << 10;
    hash ^= hash >> 6;
    return Hash(str + 1, hash);
  }
}

constexpr uint32_t operator"" _h(const char* x, size_t) { return Hash(x); }

}  // namespace vixl

#endif  // VIXL_UTILS_H