#[cfg(feature = "std")] use crate::buf::{reader, Reader}; use crate::buf::{take, Chain, Take}; use core::{cmp, mem, ptr}; #[cfg(feature = "std")] use std::io::IoSlice; use alloc::boxed::Box; macro_rules! buf_get_impl { ($this:ident, $typ:tt::$conv:tt) => {{ const SIZE: usize = mem::size_of::<$typ>(); // try to convert directly from the bytes // this Option trick is to avoid keeping a borrow on self // when advance() is called (mut borrow) and to call bytes() only once let ret = $this .chunk() .get(..SIZE) .map(|src| unsafe { $typ::$conv(*(src as *const _ as *const [_; SIZE])) }); if let Some(ret) = ret { // if the direct conversion was possible, advance and return $this.advance(SIZE); return ret; } else { // if not we copy the bytes in a temp buffer then convert let mut buf = [0; SIZE]; $this.copy_to_slice(&mut buf); // (do the advance) return $typ::$conv(buf); } }}; (le => $this:ident, $typ:tt, $len_to_read:expr) => {{ debug_assert!(mem::size_of::<$typ>() >= $len_to_read); // The same trick as above does not improve the best case speed. // It seems to be linked to the way the method is optimised by the compiler let mut buf = [0; (mem::size_of::<$typ>())]; $this.copy_to_slice(&mut buf[..($len_to_read)]); return $typ::from_le_bytes(buf); }}; (be => $this:ident, $typ:tt, $len_to_read:expr) => {{ debug_assert!(mem::size_of::<$typ>() >= $len_to_read); let mut buf = [0; (mem::size_of::<$typ>())]; $this.copy_to_slice(&mut buf[mem::size_of::<$typ>() - ($len_to_read)..]); return $typ::from_be_bytes(buf); }}; } /// Read bytes from a buffer. /// /// A buffer stores bytes in memory such that read operations are infallible. /// The underlying storage may or may not be in contiguous memory. A `Buf` value /// is a cursor into the buffer. Reading from `Buf` advances the cursor /// position. It can be thought of as an efficient `Iterator` for collections of /// bytes. /// /// The simplest `Buf` is a `&[u8]`. /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"hello world"[..]; /// /// assert_eq!(b'h', buf.get_u8()); /// assert_eq!(b'e', buf.get_u8()); /// assert_eq!(b'l', buf.get_u8()); /// /// let mut rest = [0; 8]; /// buf.copy_to_slice(&mut rest); /// /// assert_eq!(&rest[..], &b"lo world"[..]); /// ``` pub trait Buf { /// Returns the number of bytes between the current position and the end of /// the buffer. /// /// This value is greater than or equal to the length of the slice returned /// by `chunk()`. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"hello world"[..]; /// /// assert_eq!(buf.remaining(), 11); /// /// buf.get_u8(); /// /// assert_eq!(buf.remaining(), 10); /// ``` /// /// # Implementer notes /// /// Implementations of `remaining` should ensure that the return value does /// not change unless a call is made to `advance` or any other function that /// is documented to change the `Buf`'s current position. fn remaining(&self) -> usize; /// Returns a slice starting at the current position and of length between 0 /// and `Buf::remaining()`. Note that this *can* return shorter slice (this allows /// non-continuous internal representation). /// /// This is a lower level function. Most operations are done with other /// functions. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"hello world"[..]; /// /// assert_eq!(buf.chunk(), &b"hello world"[..]); /// /// buf.advance(6); /// /// assert_eq!(buf.chunk(), &b"world"[..]); /// ``` /// /// # Implementer notes /// /// This function should never panic. Once the end of the buffer is reached, /// i.e., `Buf::remaining` returns 0, calls to `chunk()` should return an /// empty slice. fn chunk(&self) -> &[u8]; /// Fills `dst` with potentially multiple slices starting at `self`'s /// current position. /// /// If the `Buf` is backed by disjoint slices of bytes, `chunk_vectored` enables /// fetching more than one slice at once. `dst` is a slice of `IoSlice` /// references, enabling the slice to be directly used with [`writev`] /// without any further conversion. The sum of the lengths of all the /// buffers in `dst` will be less than or equal to `Buf::remaining()`. /// /// The entries in `dst` will be overwritten, but the data **contained** by /// the slices **will not** be modified. If `chunk_vectored` does not fill every /// entry in `dst`, then `dst` is guaranteed to contain all remaining slices /// in `self. /// /// This is a lower level function. Most operations are done with other /// functions. /// /// # Implementer notes /// /// This function should never panic. Once the end of the buffer is reached, /// i.e., `Buf::remaining` returns 0, calls to `chunk_vectored` must return 0 /// without mutating `dst`. /// /// Implementations should also take care to properly handle being called /// with `dst` being a zero length slice. /// /// [`writev`]: http://man7.org/linux/man-pages/man2/readv.2.html #[cfg(feature = "std")] fn chunks_vectored<'a>(&'a self, dst: &mut [IoSlice<'a>]) -> usize { if dst.is_empty() { return 0; } if self.has_remaining() { dst[0] = IoSlice::new(self.chunk()); 1 } else { 0 } } /// Advance the internal cursor of the Buf /// /// The next call to `chunk()` will return a slice starting `cnt` bytes /// further into the underlying buffer. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"hello world"[..]; /// /// assert_eq!(buf.chunk(), &b"hello world"[..]); /// /// buf.advance(6); /// /// assert_eq!(buf.chunk(), &b"world"[..]); /// ``` /// /// # Panics /// /// This function **may** panic if `cnt > self.remaining()`. /// /// # Implementer notes /// /// It is recommended for implementations of `advance` to panic if `cnt > /// self.remaining()`. If the implementation does not panic, the call must /// behave as if `cnt == self.remaining()`. /// /// A call with `cnt == 0` should never panic and be a no-op. fn advance(&mut self, cnt: usize); /// Returns true if there are any more bytes to consume /// /// This is equivalent to `self.remaining() != 0`. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"a"[..]; /// /// assert!(buf.has_remaining()); /// /// buf.get_u8(); /// /// assert!(!buf.has_remaining()); /// ``` fn has_remaining(&self) -> bool { self.remaining() > 0 } /// Copies bytes from `self` into `dst`. /// /// The cursor is advanced by the number of bytes copied. `self` must have /// enough remaining bytes to fill `dst`. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"hello world"[..]; /// let mut dst = [0; 5]; /// /// buf.copy_to_slice(&mut dst); /// assert_eq!(&b"hello"[..], &dst); /// assert_eq!(6, buf.remaining()); /// ``` /// /// # Panics /// /// This function panics if `self.remaining() < dst.len()` fn copy_to_slice(&mut self, dst: &mut [u8]) { let mut off = 0; assert!(self.remaining() >= dst.len()); while off < dst.len() { let cnt; unsafe { let src = self.chunk(); cnt = cmp::min(src.len(), dst.len() - off); ptr::copy_nonoverlapping(src.as_ptr(), dst[off..].as_mut_ptr(), cnt); off += cnt; } self.advance(cnt); } } /// Gets an unsigned 8 bit integer from `self`. /// /// The current position is advanced by 1. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x08 hello"[..]; /// assert_eq!(8, buf.get_u8()); /// ``` /// /// # Panics /// /// This function panics if there is no more remaining data in `self`. fn get_u8(&mut self) -> u8 { assert!(self.remaining() >= 1); let ret = self.chunk()[0]; self.advance(1); ret } /// Gets a signed 8 bit integer from `self`. /// /// The current position is advanced by 1. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x08 hello"[..]; /// assert_eq!(8, buf.get_i8()); /// ``` /// /// # Panics /// /// This function panics if there is no more remaining data in `self`. fn get_i8(&mut self) -> i8 { assert!(self.remaining() >= 1); let ret = self.chunk()[0] as i8; self.advance(1); ret } /// Gets an unsigned 16 bit integer from `self` in big-endian byte order. /// /// The current position is advanced by 2. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x08\x09 hello"[..]; /// assert_eq!(0x0809, buf.get_u16()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_u16(&mut self) -> u16 { buf_get_impl!(self, u16::from_be_bytes); } /// Gets an unsigned 16 bit integer from `self` in little-endian byte order. /// /// The current position is advanced by 2. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x09\x08 hello"[..]; /// assert_eq!(0x0809, buf.get_u16_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_u16_le(&mut self) -> u16 { buf_get_impl!(self, u16::from_le_bytes); } /// Gets a signed 16 bit integer from `self` in big-endian byte order. /// /// The current position is advanced by 2. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x08\x09 hello"[..]; /// assert_eq!(0x0809, buf.get_i16()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_i16(&mut self) -> i16 { buf_get_impl!(self, i16::from_be_bytes); } /// Gets a signed 16 bit integer from `self` in little-endian byte order. /// /// The current position is advanced by 2. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x09\x08 hello"[..]; /// assert_eq!(0x0809, buf.get_i16_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_i16_le(&mut self) -> i16 { buf_get_impl!(self, i16::from_le_bytes); } /// Gets an unsigned 32 bit integer from `self` in the big-endian byte order. /// /// The current position is advanced by 4. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x08\x09\xA0\xA1 hello"[..]; /// assert_eq!(0x0809A0A1, buf.get_u32()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_u32(&mut self) -> u32 { buf_get_impl!(self, u32::from_be_bytes); } /// Gets an unsigned 32 bit integer from `self` in the little-endian byte order. /// /// The current position is advanced by 4. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\xA1\xA0\x09\x08 hello"[..]; /// assert_eq!(0x0809A0A1, buf.get_u32_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_u32_le(&mut self) -> u32 { buf_get_impl!(self, u32::from_le_bytes); } /// Gets a signed 32 bit integer from `self` in big-endian byte order. /// /// The current position is advanced by 4. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x08\x09\xA0\xA1 hello"[..]; /// assert_eq!(0x0809A0A1, buf.get_i32()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_i32(&mut self) -> i32 { buf_get_impl!(self, i32::from_be_bytes); } /// Gets a signed 32 bit integer from `self` in little-endian byte order. /// /// The current position is advanced by 4. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\xA1\xA0\x09\x08 hello"[..]; /// assert_eq!(0x0809A0A1, buf.get_i32_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_i32_le(&mut self) -> i32 { buf_get_impl!(self, i32::from_le_bytes); } /// Gets an unsigned 64 bit integer from `self` in big-endian byte order. /// /// The current position is advanced by 8. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08 hello"[..]; /// assert_eq!(0x0102030405060708, buf.get_u64()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_u64(&mut self) -> u64 { buf_get_impl!(self, u64::from_be_bytes); } /// Gets an unsigned 64 bit integer from `self` in little-endian byte order. /// /// The current position is advanced by 8. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..]; /// assert_eq!(0x0102030405060708, buf.get_u64_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_u64_le(&mut self) -> u64 { buf_get_impl!(self, u64::from_le_bytes); } /// Gets a signed 64 bit integer from `self` in big-endian byte order. /// /// The current position is advanced by 8. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08 hello"[..]; /// assert_eq!(0x0102030405060708, buf.get_i64()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_i64(&mut self) -> i64 { buf_get_impl!(self, i64::from_be_bytes); } /// Gets a signed 64 bit integer from `self` in little-endian byte order. /// /// The current position is advanced by 8. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..]; /// assert_eq!(0x0102030405060708, buf.get_i64_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_i64_le(&mut self) -> i64 { buf_get_impl!(self, i64::from_le_bytes); } /// Gets an unsigned 128 bit integer from `self` in big-endian byte order. /// /// The current position is advanced by 16. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello"[..]; /// assert_eq!(0x01020304050607080910111213141516, buf.get_u128()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_u128(&mut self) -> u128 { buf_get_impl!(self, u128::from_be_bytes); } /// Gets an unsigned 128 bit integer from `self` in little-endian byte order. /// /// The current position is advanced by 16. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..]; /// assert_eq!(0x01020304050607080910111213141516, buf.get_u128_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_u128_le(&mut self) -> u128 { buf_get_impl!(self, u128::from_le_bytes); } /// Gets a signed 128 bit integer from `self` in big-endian byte order. /// /// The current position is advanced by 16. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello"[..]; /// assert_eq!(0x01020304050607080910111213141516, buf.get_i128()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_i128(&mut self) -> i128 { buf_get_impl!(self, i128::from_be_bytes); } /// Gets a signed 128 bit integer from `self` in little-endian byte order. /// /// The current position is advanced by 16. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..]; /// assert_eq!(0x01020304050607080910111213141516, buf.get_i128_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_i128_le(&mut self) -> i128 { buf_get_impl!(self, i128::from_le_bytes); } /// Gets an unsigned n-byte integer from `self` in big-endian byte order. /// /// The current position is advanced by `nbytes`. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x01\x02\x03 hello"[..]; /// assert_eq!(0x010203, buf.get_uint(3)); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_uint(&mut self, nbytes: usize) -> u64 { buf_get_impl!(be => self, u64, nbytes); } /// Gets an unsigned n-byte integer from `self` in little-endian byte order. /// /// The current position is advanced by `nbytes`. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x03\x02\x01 hello"[..]; /// assert_eq!(0x010203, buf.get_uint_le(3)); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_uint_le(&mut self, nbytes: usize) -> u64 { buf_get_impl!(le => self, u64, nbytes); } /// Gets a signed n-byte integer from `self` in big-endian byte order. /// /// The current position is advanced by `nbytes`. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x01\x02\x03 hello"[..]; /// assert_eq!(0x010203, buf.get_int(3)); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_int(&mut self, nbytes: usize) -> i64 { buf_get_impl!(be => self, i64, nbytes); } /// Gets a signed n-byte integer from `self` in little-endian byte order. /// /// The current position is advanced by `nbytes`. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x03\x02\x01 hello"[..]; /// assert_eq!(0x010203, buf.get_int_le(3)); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_int_le(&mut self, nbytes: usize) -> i64 { buf_get_impl!(le => self, i64, nbytes); } /// Gets an IEEE754 single-precision (4 bytes) floating point number from /// `self` in big-endian byte order. /// /// The current position is advanced by 4. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x3F\x99\x99\x9A hello"[..]; /// assert_eq!(1.2f32, buf.get_f32()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_f32(&mut self) -> f32 { f32::from_bits(Self::get_u32(self)) } /// Gets an IEEE754 single-precision (4 bytes) floating point number from /// `self` in little-endian byte order. /// /// The current position is advanced by 4. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x9A\x99\x99\x3F hello"[..]; /// assert_eq!(1.2f32, buf.get_f32_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_f32_le(&mut self) -> f32 { f32::from_bits(Self::get_u32_le(self)) } /// Gets an IEEE754 double-precision (8 bytes) floating point number from /// `self` in big-endian byte order. /// /// The current position is advanced by 8. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x3F\xF3\x33\x33\x33\x33\x33\x33 hello"[..]; /// assert_eq!(1.2f64, buf.get_f64()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_f64(&mut self) -> f64 { f64::from_bits(Self::get_u64(self)) } /// Gets an IEEE754 double-precision (8 bytes) floating point number from /// `self` in little-endian byte order. /// /// The current position is advanced by 8. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut buf = &b"\x33\x33\x33\x33\x33\x33\xF3\x3F hello"[..]; /// assert_eq!(1.2f64, buf.get_f64_le()); /// ``` /// /// # Panics /// /// This function panics if there is not enough remaining data in `self`. fn get_f64_le(&mut self) -> f64 { f64::from_bits(Self::get_u64_le(self)) } /// Consumes `len` bytes inside self and returns new instance of `Bytes` /// with this data. /// /// This function may be optimized by the underlying type to avoid actual /// copies. For example, `Bytes` implementation will do a shallow copy /// (ref-count increment). /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let bytes = (&b"hello world"[..]).copy_to_bytes(5); /// assert_eq!(&bytes[..], &b"hello"[..]); /// ``` fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes { use super::BufMut; assert!(len <= self.remaining(), "`len` greater than remaining"); let mut ret = crate::BytesMut::with_capacity(len); ret.put(self.take(len)); ret.freeze() } /// Creates an adaptor which will read at most `limit` bytes from `self`. /// /// This function returns a new instance of `Buf` which will read at most /// `limit` bytes. /// /// # Examples /// /// ``` /// use bytes::{Buf, BufMut}; /// /// let mut buf = b"hello world"[..].take(5); /// let mut dst = vec![]; /// /// dst.put(&mut buf); /// assert_eq!(dst, b"hello"); /// /// let mut buf = buf.into_inner(); /// dst.clear(); /// dst.put(&mut buf); /// assert_eq!(dst, b" world"); /// ``` fn take(self, limit: usize) -> Take where Self: Sized, { take::new(self, limit) } /// Creates an adaptor which will chain this buffer with another. /// /// The returned `Buf` instance will first consume all bytes from `self`. /// Afterwards the output is equivalent to the output of next. /// /// # Examples /// /// ``` /// use bytes::Buf; /// /// let mut chain = b"hello "[..].chain(&b"world"[..]); /// /// let full = chain.copy_to_bytes(11); /// assert_eq!(full.chunk(), b"hello world"); /// ``` fn chain(self, next: U) -> Chain where Self: Sized, { Chain::new(self, next) } /// Creates an adaptor which implements the `Read` trait for `self`. /// /// This function returns a new value which implements `Read` by adapting /// the `Read` trait functions to the `Buf` trait functions. Given that /// `Buf` operations are infallible, none of the `Read` functions will /// return with `Err`. /// /// # Examples /// /// ``` /// use bytes::{Bytes, Buf}; /// use std::io::Read; /// /// let buf = Bytes::from("hello world"); /// /// let mut reader = buf.reader(); /// let mut dst = [0; 1024]; /// /// let num = reader.read(&mut dst).unwrap(); /// /// assert_eq!(11, num); /// assert_eq!(&dst[..11], &b"hello world"[..]); /// ``` #[cfg(feature = "std")] fn reader(self) -> Reader where Self: Sized, { reader::new(self) } } macro_rules! deref_forward_buf { () => { fn remaining(&self) -> usize { (**self).remaining() } fn chunk(&self) -> &[u8] { (**self).chunk() } #[cfg(feature = "std")] fn chunks_vectored<'b>(&'b self, dst: &mut [IoSlice<'b>]) -> usize { (**self).chunks_vectored(dst) } fn advance(&mut self, cnt: usize) { (**self).advance(cnt) } fn has_remaining(&self) -> bool { (**self).has_remaining() } fn copy_to_slice(&mut self, dst: &mut [u8]) { (**self).copy_to_slice(dst) } fn get_u8(&mut self) -> u8 { (**self).get_u8() } fn get_i8(&mut self) -> i8 { (**self).get_i8() } fn get_u16(&mut self) -> u16 { (**self).get_u16() } fn get_u16_le(&mut self) -> u16 { (**self).get_u16_le() } fn get_i16(&mut self) -> i16 { (**self).get_i16() } fn get_i16_le(&mut self) -> i16 { (**self).get_i16_le() } fn get_u32(&mut self) -> u32 { (**self).get_u32() } fn get_u32_le(&mut self) -> u32 { (**self).get_u32_le() } fn get_i32(&mut self) -> i32 { (**self).get_i32() } fn get_i32_le(&mut self) -> i32 { (**self).get_i32_le() } fn get_u64(&mut self) -> u64 { (**self).get_u64() } fn get_u64_le(&mut self) -> u64 { (**self).get_u64_le() } fn get_i64(&mut self) -> i64 { (**self).get_i64() } fn get_i64_le(&mut self) -> i64 { (**self).get_i64_le() } fn get_uint(&mut self, nbytes: usize) -> u64 { (**self).get_uint(nbytes) } fn get_uint_le(&mut self, nbytes: usize) -> u64 { (**self).get_uint_le(nbytes) } fn get_int(&mut self, nbytes: usize) -> i64 { (**self).get_int(nbytes) } fn get_int_le(&mut self, nbytes: usize) -> i64 { (**self).get_int_le(nbytes) } fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes { (**self).copy_to_bytes(len) } }; } impl Buf for &mut T { deref_forward_buf!(); } impl Buf for Box { deref_forward_buf!(); } impl Buf for &[u8] { #[inline] fn remaining(&self) -> usize { self.len() } #[inline] fn chunk(&self) -> &[u8] { self } #[inline] fn advance(&mut self, cnt: usize) { *self = &self[cnt..]; } } #[cfg(feature = "std")] impl> Buf for std::io::Cursor { fn remaining(&self) -> usize { let len = self.get_ref().as_ref().len(); let pos = self.position(); if pos >= len as u64 { return 0; } len - pos as usize } fn chunk(&self) -> &[u8] { let len = self.get_ref().as_ref().len(); let pos = self.position(); if pos >= len as u64 { return &[]; } &self.get_ref().as_ref()[pos as usize..] } fn advance(&mut self, cnt: usize) { let pos = (self.position() as usize) .checked_add(cnt) .expect("overflow"); assert!(pos <= self.get_ref().as_ref().len()); self.set_position(pos as u64); } } // The existence of this function makes the compiler catch if the Buf // trait is "object-safe" or not. fn _assert_trait_object(_b: &dyn Buf) {}