/* * Copyright (C) 2014 Andrew Duggan * Copyright (C) 2014 Synaptics Inc * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include "rmi4update.h" #define RMI_F34_QUERY_SIZE 7 #define RMI_F34_HAS_NEW_REG_MAP (1 << 0) #define RMI_F34_IS_UNLOCKED (1 << 1) #define RMI_F34_HAS_CONFIG_ID (1 << 2) #define RMI_F34_BLOCK_SIZE_OFFSET 1 #define RMI_F34_FW_BLOCKS_OFFSET 3 #define RMI_F34_CONFIG_BLOCKS_OFFSET 5 #define RMI_F34_BLOCK_SIZE_V1_OFFSET 0 #define RMI_F34_FW_BLOCKS_V1_OFFSET 0 #define RMI_F34_CONFIG_BLOCKS_V1_OFFSET 2 #define RMI_F34_BLOCK_DATA_OFFSET 2 #define RMI_F34_BLOCK_DATA_V1_OFFSET 1 #define RMI_F34_COMMAND_MASK 0x0F #define RMI_F34_STATUS_MASK 0x07 #define RMI_F34_STATUS_SHIFT 4 #define RMI_F34_ENABLED_MASK 0x80 #define RMI_F34_COMMAND_V1_MASK 0x3F #define RMI_F34_STATUS_V1_MASK 0x3F #define RMI_F34_ENABLED_V1_MASK 0x80 #define RMI_F34_WRITE_FW_BLOCK 0x02 #define RMI_F34_ERASE_ALL 0x03 #define RMI_F34_WRITE_LOCKDOWN_BLOCK 0x04 #define RMI_F34_WRITE_CONFIG_BLOCK 0x06 #define RMI_F34_ENABLE_FLASH_PROG 0x0f #define RMI_F34_ENABLE_WAIT_MS 300 #define RMI_F34_ERASE_WAIT_MS (5 * 1000) #define RMI_F34_ERASE_V8_WAIT_MS (10000) #define RMI_F34_IDLE_WAIT_MS 500 /* Most recent device status event */ #define RMI_F01_STATUS_CODE(status) ((status) & 0x0f) /* Indicates that flash programming is enabled (bootloader mode). */ #define RMI_F01_STATUS_BOOTLOADER(status) (!!((status) & 0x40)) /* The device has lost its configuration for some reason. */ #define RMI_F01_STATUS_UNCONFIGURED(status) (!!((status) & 0x80)) /* Indicates that flash programming is enabled V7(bootloader mode). */ #define RMI_F01_STATUS_BOOTLOADER_v7(status) (!!((status) & 0x80)) /* * Sleep mode controls power management on the device and affects all * functions of the device. */ #define RMI_F01_CTRL0_SLEEP_MODE_MASK 0x03 #define RMI_SLEEP_MODE_NORMAL 0x00 #define RMI_SLEEP_MODE_SENSOR_SLEEP 0x01 #define RMI_SLEEP_MODE_RESERVED0 0x02 #define RMI_SLEEP_MODE_RESERVED1 0x03 /* * This bit disables whatever sleep mode may be selected by the sleep_mode * field and forces the device to run at full power without sleeping. */ #define RMI_F01_CRTL0_NOSLEEP_BIT (1 << 2) int RMI4Update::UpdateFirmware(bool force, bool performLockdown) { struct timespec start; struct timespec end; long long int duration_us = 0; int rc; const unsigned char eraseAll = RMI_F34_ERASE_ALL; rc = FindUpdateFunctions(); if (rc != UPDATE_SUCCESS) return rc; rc = m_device.QueryBasicProperties(); if (rc < 0) return UPDATE_FAIL_QUERY_BASIC_PROPERTIES; if (!force && m_firmwareImage.HasIO()) { if (m_firmwareImage.GetFirmwareID() <= m_device.GetFirmwareID()) { fprintf(stderr, "Firmware image (%ld) is not newer then the firmware on the device (%ld)\n", m_firmwareImage.GetFirmwareID(), m_device.GetFirmwareID()); rc = UPDATE_FAIL_FIRMWARE_IMAGE_IS_OLDER; return rc; } } fprintf(stdout, "Device Properties:\n"); m_device.PrintProperties(); rc = DisableNonessentialInterupts(); if (rc != UPDATE_SUCCESS) return rc; rc = ReadF34Queries(); if (rc != UPDATE_SUCCESS) return rc; rc = m_firmwareImage.VerifyImageMatchesDevice(GetFirmwareSize(), GetConfigSize()); if (rc != UPDATE_SUCCESS) return rc; if (m_f34.GetFunctionVersion() == 0x02) { fprintf(stdout, "Enable Flash V7+...\n"); rc = EnterFlashProgrammingV7(); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } fprintf(stdout, "Enable Flash done V7+...\n"); if (!m_IsErased){ fprintf(stdout, "Erasing FW V7+...\n"); rc = EraseFirmwareV7(); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } fprintf(stdout, "Erasing FW done V7+...\n"); } if(m_bootloaderID[1] == 8){ if (m_firmwareImage.GetFlashConfigData()) { fprintf(stdout, "Writing flash configuration V8...\n"); rc = WriteFlashConfigV7(); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } fprintf(stdout, "Writing flash config done V8...\n"); } } if (m_firmwareImage.GetFirmwareData()) { fprintf(stdout, "Writing firmware V7+...\n"); rc = WriteFirmwareV7(); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } fprintf(stdout, "Writing firmware done V7+...\n"); } if (m_firmwareImage.GetConfigData()) { fprintf(stdout, "Writing core configuration V7+...\n"); rc = WriteCoreConfigV7(); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } fprintf(stdout, "Writing core config done V7+...\n"); goto reset; } } else { rc = EnterFlashProgramming(); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } } if (performLockdown && m_unlocked) { if (m_firmwareImage.GetLockdownData()) { fprintf(stdout, "Writing lockdown...\n"); clock_gettime(CLOCK_MONOTONIC, &start); rc = WriteBlocks(m_firmwareImage.GetLockdownData(), m_firmwareImage.GetLockdownSize() / 0x10, RMI_F34_WRITE_LOCKDOWN_BLOCK); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } clock_gettime(CLOCK_MONOTONIC, &end); duration_us = diff_time(&start, &end); fprintf(stdout, "Done writing lockdown, time: %lld us.\n", duration_us); } rc = EnterFlashProgramming(); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } } rc = WriteBootloaderID(); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } fprintf(stdout, "Erasing FW...\n"); clock_gettime(CLOCK_MONOTONIC, &start); rc = m_device.Write(m_f34StatusAddr, &eraseAll, 1); if (rc != 1) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(UPDATE_FAIL_ERASE_ALL)); rc = UPDATE_FAIL_ERASE_ALL; goto reset; } rc = WaitForIdle(RMI_F34_ERASE_WAIT_MS); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } clock_gettime(CLOCK_MONOTONIC, &end); duration_us = diff_time(&start, &end); fprintf(stdout, "Erase complete, time: %lld us.\n", duration_us); if (m_firmwareImage.GetFirmwareData()) { fprintf(stdout, "Writing firmware...\n"); clock_gettime(CLOCK_MONOTONIC, &start); rc = WriteBlocks(m_firmwareImage.GetFirmwareData(), m_fwBlockCount, RMI_F34_WRITE_FW_BLOCK); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } clock_gettime(CLOCK_MONOTONIC, &end); duration_us = diff_time(&start, &end); fprintf(stdout, "Done writing FW, time: %lld us.\n", duration_us); } if (m_firmwareImage.GetConfigData()) { fprintf(stdout, "Writing configuration...\n"); clock_gettime(CLOCK_MONOTONIC, &start); rc = WriteBlocks(m_firmwareImage.GetConfigData(), m_configBlockCount, RMI_F34_WRITE_CONFIG_BLOCK); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); goto reset; } clock_gettime(CLOCK_MONOTONIC, &end); duration_us = diff_time(&start, &end); fprintf(stdout, "Done writing config, time: %lld us.\n", duration_us); } reset: m_device.Reset(); rebind: m_device.RebindDriver(); if(!m_device.CheckABSEvent()) { goto rebind; } // In order to print out new PR rc = FindUpdateFunctions(); if (rc != UPDATE_SUCCESS) return rc; rc = m_device.QueryBasicProperties(); if (rc < 0) return UPDATE_FAIL_QUERY_BASIC_PROPERTIES; fprintf(stdout, "Device Properties:\n"); m_device.PrintProperties(); return rc; } int RMI4Update::DisableNonessentialInterupts() { int rc; unsigned char interruptEnabeMask = m_f34.GetInterruptMask() | m_f01.GetInterruptMask(); rc = m_device.Write(m_f01.GetControlBase() + 1, &interruptEnabeMask, 1); if (rc != 1) return rc; return UPDATE_SUCCESS; } int RMI4Update::FindUpdateFunctions() { if (0 > m_device.ScanPDT()) return UPDATE_FAIL_SCAN_PDT; if (!m_device.GetFunction(m_f01, 0x01)) return UPDATE_FAIL_NO_FUNCTION_01; if (!m_device.GetFunction(m_f34, 0x34)) return UPDATE_FAIL_NO_FUNCTION_34; return UPDATE_SUCCESS; } int RMI4Update::rmi4update_poll() { unsigned char f34_status; unsigned short dataAddr = m_f34.GetDataBase(); int rc; rc = m_device.Read(dataAddr, &f34_status, sizeof(unsigned char)); if (rc != sizeof(unsigned char)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; m_flashStatus = f34_status & 0x1F; m_inBLmode = f34_status & 0x80; if(!m_flashStatus) rc = m_device.Read(dataAddr + 4, &m_flashCmd, sizeof(unsigned char)); return 0; } int RMI4Update::ReadFlashConfig() { int rc; int transaction_count, remain_block; unsigned char *flash_cfg; int transfer_leng = 0; int read_leng = 0; int offset = 0; unsigned char trans_leng_buf[2]; unsigned char cmd_buf[1]; unsigned char off[2] = {0, 0}; unsigned char partition_id = FLASH_CONFIG_PARTITION; unsigned short dataAddr = m_f34.GetDataBase(); int i; int retry = 0; unsigned char *data_temp; struct partition_tbl *partition_temp; flash_cfg = (unsigned char *)malloc(m_blockSize * m_flashConfigLength); memset(flash_cfg, 0, m_blockSize * m_flashConfigLength); partition_temp = (partition_tbl *)malloc(sizeof(struct partition_tbl)); memset(partition_temp, 0, sizeof(struct partition_tbl)); /* calculate the count */ remain_block = (m_flashConfigLength % m_payloadLength); transaction_count = (m_flashConfigLength / m_payloadLength); if (remain_block > 0) transaction_count++; /* set partition id for bootloader 7 */ rc = m_device.Write(dataAddr + 1, &partition_id, sizeof(partition_id)); if (rc != sizeof(partition_id)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; rc = m_device.Write(dataAddr + 2, off, sizeof(off)); if (rc != sizeof(off)) return UPDATE_FAIL_WRITE_INITIAL_ZEROS; for (i = 0; i < transaction_count; i++) { if ((i == (transaction_count -1)) && (remain_block > 0)) transfer_leng = remain_block; else transfer_leng = m_payloadLength; // Set Transfer Length trans_leng_buf[0] = (unsigned char)(transfer_leng & 0xFF); trans_leng_buf[1] = (unsigned char)((transfer_leng & 0xFF00) >> 8); rc = m_device.Write(dataAddr + 3, trans_leng_buf, sizeof(trans_leng_buf)); if (rc != sizeof(trans_leng_buf)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; // Set Command to Read cmd_buf[0] = (unsigned char)CMD_V7_READ; rc = m_device.Write(dataAddr + 4, cmd_buf, sizeof(cmd_buf)); if (rc != sizeof(cmd_buf)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; //Wait for completion do { Sleep(20); rmi4update_poll(); if (m_flashStatus == SUCCESS){ break; } retry++; } while(retry < 20); read_leng = transfer_leng * m_blockSize; data_temp = (unsigned char *) malloc(sizeof(char) * read_leng); rc = m_device.Read(dataAddr + 5, data_temp, sizeof(char) * read_leng); if (rc != ((ssize_t)sizeof(char) * read_leng)) return UPDATE_FAIL_READ_F34_QUERIES; memcpy(flash_cfg + offset, data_temp, sizeof(char) * read_leng); offset += read_leng; free(data_temp); } // Initialize as NULL here to avoid segmentation fault. m_partitionConfig = NULL; m_partitionCore = NULL; m_partitionGuest = NULL; /* parse the config length */ for (i = 2; i < m_blockSize * m_flashConfigLength; i = i + 8) { memcpy(partition_temp->data ,flash_cfg + i, sizeof(struct partition_tbl)); if (partition_temp->partition_id == CORE_CONFIG_PARTITION) { m_partitionConfig = (partition_tbl *) malloc(sizeof(struct partition_tbl)); memcpy(m_partitionConfig ,partition_temp, sizeof(struct partition_tbl)); memset(partition_temp, 0, sizeof(struct partition_tbl)); fprintf(stdout, "CORE_CONFIG_PARTITION is found\n"); } else if (partition_temp->partition_id == CORE_CODE_PARTITION) { m_partitionCore = (partition_tbl *) malloc(sizeof(struct partition_tbl)); memcpy(m_partitionCore ,partition_temp, sizeof(struct partition_tbl)); memset(partition_temp, 0, sizeof(struct partition_tbl)); fprintf(stdout, "CORE_CODE_PARTITION is found\n"); } else if (partition_temp->partition_id == GUEST_CODE_PARTITION) { m_partitionGuest = (partition_tbl *) malloc(sizeof(struct partition_tbl)); memcpy(m_partitionGuest ,partition_temp, sizeof(struct partition_tbl)); memset(partition_temp, 0, sizeof(struct partition_tbl)); fprintf(stdout, "GUEST_CODE_PARTITION is found\n"); } else if (partition_temp->partition_id == NONE_PARTITION) break; } if (flash_cfg) free(flash_cfg); if (partition_temp) free(partition_temp); m_fwBlockCount = m_partitionCore ? m_partitionCore->partition_len : 0; m_configBlockCount = m_partitionConfig ? m_partitionConfig->partition_len : 0; m_guestBlockCount = m_partitionGuest ? m_partitionGuest->partition_len : 0; fprintf(stdout, "F34 fw blocks: %d\n", m_fwBlockCount); fprintf(stdout, "F34 config blocks: %d\n", m_configBlockCount); fprintf(stdout, "F34 guest blocks: %d\n", m_guestBlockCount); fprintf(stdout, "\n"); m_guestData = (unsigned char *) malloc(m_guestBlockCount * m_blockSize); memset(m_guestData, 0, m_guestBlockCount * m_blockSize); memset(m_guestData + m_guestBlockCount * m_blockSize -4, 0, 4); return UPDATE_SUCCESS; } int RMI4Update::ReadF34QueriesV7() { int rc; struct f34_v7_query_0 query_0; struct f34_v7_query_1_7 query_1_7; unsigned char idStr[3]; unsigned short queryAddr = m_f34.GetQueryBase(); unsigned char offset; rc = m_device.Read(queryAddr, query_0.data, sizeof(query_0.data)); if (rc != sizeof(query_0.data)) return UPDATE_FAIL_READ_BOOTLOADER_ID; offset = query_0.subpacket_1_size + 1; rc = m_device.Read(queryAddr + offset, query_1_7.data, sizeof(query_1_7.data)); if (rc != sizeof(query_1_7.data)) return UPDATE_FAIL_READ_BOOTLOADER_ID; m_bootloaderID[0] = query_1_7.bl_minor_revision; m_bootloaderID[1] = query_1_7.bl_major_revision; m_hasConfigID = query_0.has_config_id; m_blockSize = query_1_7.block_size_15_8 << 8 | query_1_7.block_size_7_0; m_flashConfigLength = query_1_7.flash_config_length_15_8 << 8 | query_1_7.flash_config_length_7_0; m_payloadLength = query_1_7.payload_length_15_8 << 8 | query_1_7.payload_length_7_0; m_buildID = query_1_7.bl_fw_id_7_0 | query_1_7.bl_fw_id_15_8 << 8 | query_1_7.bl_fw_id_23_16 << 16 | query_1_7.bl_fw_id_31_24 << 24; idStr[0] = m_bootloaderID[0]; idStr[1] = m_bootloaderID[1]; idStr[2] = 0; fprintf(stdout, "F34 bootloader id: %s (%#04x %#04x)\n", idStr, m_bootloaderID[0], m_bootloaderID[1]); fprintf(stdout, "F34 has config id: %d\n", m_hasConfigID); fprintf(stdout, "F34 unlocked: %d\n", m_unlocked); fprintf(stdout, "F34 block size: %d\n", m_blockSize); fprintf(stdout, "F34 flash cfg leng:%d\n", m_flashConfigLength); fprintf(stdout, "F34 payload length:%d\n", m_payloadLength); fprintf(stdout, "F34 build id: %lu\n", m_buildID); return ReadFlashConfig(); } int RMI4Update::ReadF34Queries() { int rc; unsigned char idStr[3]; unsigned char buf[8]; unsigned short queryAddr = m_f34.GetQueryBase(); unsigned short f34Version = m_f34.GetFunctionVersion(); unsigned short querySize; if (f34Version == 0x2) return ReadF34QueriesV7(); else if (f34Version == 0x1) querySize = 8; else querySize = 2; rc = m_device.Read(queryAddr, m_bootloaderID, RMI_BOOTLOADER_ID_SIZE); if (rc != RMI_BOOTLOADER_ID_SIZE) return UPDATE_FAIL_READ_BOOTLOADER_ID; if (f34Version == 0x1) ++queryAddr; else queryAddr += querySize; if (f34Version == 0x1) { rc = m_device.Read(queryAddr, buf, 1); if (rc != 1) return UPDATE_FAIL_READ_F34_QUERIES; m_hasNewRegmap = buf[0] & RMI_F34_HAS_NEW_REG_MAP; m_unlocked = buf[0] & RMI_F34_IS_UNLOCKED;; m_hasConfigID = buf[0] & RMI_F34_HAS_CONFIG_ID; ++queryAddr; rc = m_device.Read(queryAddr, buf, 2); if (rc != 2) return UPDATE_FAIL_READ_F34_QUERIES; m_blockSize = extract_short(buf + RMI_F34_BLOCK_SIZE_V1_OFFSET); ++queryAddr; rc = m_device.Read(queryAddr, buf, 8); if (rc != 8) return UPDATE_FAIL_READ_F34_QUERIES; m_fwBlockCount = extract_short(buf + RMI_F34_FW_BLOCKS_V1_OFFSET); m_configBlockCount = extract_short(buf + RMI_F34_CONFIG_BLOCKS_V1_OFFSET); } else { rc = m_device.Read(queryAddr, buf, RMI_F34_QUERY_SIZE); if (rc != RMI_F34_QUERY_SIZE) return UPDATE_FAIL_READ_F34_QUERIES; m_hasNewRegmap = buf[0] & RMI_F34_HAS_NEW_REG_MAP; m_unlocked = buf[0] & RMI_F34_IS_UNLOCKED;; m_hasConfigID = buf[0] & RMI_F34_HAS_CONFIG_ID; m_blockSize = extract_short(buf + RMI_F34_BLOCK_SIZE_OFFSET); m_fwBlockCount = extract_short(buf + RMI_F34_FW_BLOCKS_OFFSET); m_configBlockCount = extract_short(buf + RMI_F34_CONFIG_BLOCKS_OFFSET); } idStr[0] = m_bootloaderID[0]; idStr[1] = m_bootloaderID[1]; idStr[2] = 0; fprintf(stdout, "F34 bootloader id: %s (%#04x %#04x)\n", idStr, m_bootloaderID[0], m_bootloaderID[1]); fprintf(stdout, "F34 has config id: %d\n", m_hasConfigID); fprintf(stdout, "F34 unlocked: %d\n", m_unlocked); fprintf(stdout, "F34 new reg map: %d\n", m_hasNewRegmap); fprintf(stdout, "F34 block size: %d\n", m_blockSize); fprintf(stdout, "F34 fw blocks: %d\n", m_fwBlockCount); fprintf(stdout, "F34 config blocks: %d\n", m_configBlockCount); fprintf(stdout, "\n"); if (f34Version == 0x1) m_f34StatusAddr = m_f34.GetDataBase() + 2; else m_f34StatusAddr = m_f34.GetDataBase() + RMI_F34_BLOCK_DATA_OFFSET + m_blockSize; return UPDATE_SUCCESS; } int RMI4Update::ReadF34Controls() { int rc; unsigned char buf[2]; if (m_f34.GetFunctionVersion() == 0x1) { rc = m_device.Read(m_f34StatusAddr, buf, 2); if (rc != 2) return UPDATE_FAIL_READ_F34_CONTROLS; m_f34Command = buf[0] & RMI_F34_COMMAND_V1_MASK; m_f34Status = buf[1] & RMI_F34_STATUS_V1_MASK; m_programEnabled = !!(buf[1] & RMI_F34_ENABLED_MASK); } else { rc = m_device.Read(m_f34StatusAddr, buf, 1); if (rc != 1) return UPDATE_FAIL_READ_F34_CONTROLS; m_f34Command = buf[0] & RMI_F34_COMMAND_MASK; m_f34Status = (buf[0] >> RMI_F34_STATUS_SHIFT) & RMI_F34_STATUS_MASK; m_programEnabled = !!(buf[0] & RMI_F34_ENABLED_MASK); } return UPDATE_SUCCESS; } int RMI4Update::WriteBootloaderID() { int rc; int blockDataOffset = RMI_F34_BLOCK_DATA_OFFSET; if (m_f34.GetFunctionVersion() == 0x1) blockDataOffset = RMI_F34_BLOCK_DATA_V1_OFFSET; rc = m_device.Write(m_f34.GetDataBase() + blockDataOffset, m_bootloaderID, RMI_BOOTLOADER_ID_SIZE); if (rc != RMI_BOOTLOADER_ID_SIZE) return UPDATE_FAIL_WRITE_BOOTLOADER_ID; return UPDATE_SUCCESS; } int RMI4Update::WriteFirmwareV7() { int transaction_count, remain_block; int transfer_leng = 0; int offset = 0; unsigned char trans_leng_buf[2]; unsigned char cmd_buf[1]; unsigned char off[2] = {0, 0}; unsigned char partition_id; int i; int retry = 0; unsigned char *data_temp; int rc; unsigned short left_bytes; unsigned short write_size; unsigned short max_write_size; unsigned short dataAddr = m_f34.GetDataBase(); /* calculate the count */ partition_id = CORE_CODE_PARTITION; remain_block = (m_fwBlockCount % m_payloadLength); transaction_count = (m_fwBlockCount / m_payloadLength); if (remain_block > 0) transaction_count++; /* set partition id for bootloader 7 */ rc = m_device.Write(dataAddr + 1, &partition_id, sizeof(partition_id)); if (rc != sizeof(partition_id)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; rc = m_device.Write(dataAddr + 2, off, sizeof(off)); if (rc != sizeof(off)) return UPDATE_FAIL_WRITE_INITIAL_ZEROS; for (i = 0; i < transaction_count; i++) { if ((i == (transaction_count -1)) && (remain_block > 0)) transfer_leng = remain_block; else transfer_leng = m_payloadLength; // Set Transfer Length trans_leng_buf[0] = (unsigned char)(transfer_leng & 0xFF); trans_leng_buf[1] = (unsigned char)((transfer_leng & 0xFF00) >> 8); rc = m_device.Write(dataAddr + 3, trans_leng_buf, sizeof(trans_leng_buf)); if (rc != sizeof(trans_leng_buf)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; // Set Command to Write cmd_buf[0] = (unsigned char)CMD_V7_WRITE; rc = m_device.Write(dataAddr + 4, cmd_buf, sizeof(cmd_buf)); if (rc != sizeof(cmd_buf)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; max_write_size = 16; if (max_write_size >= transfer_leng * m_blockSize) max_write_size = transfer_leng * m_blockSize; else if (max_write_size > m_blockSize) max_write_size -= max_write_size % m_blockSize; else max_write_size = m_blockSize; left_bytes = transfer_leng * m_blockSize; do { if (left_bytes / max_write_size) write_size = max_write_size; else write_size = left_bytes; data_temp = (unsigned char *) malloc(sizeof(unsigned char) * write_size); memcpy(data_temp, m_firmwareImage.GetFirmwareData() + offset, sizeof(char) * write_size); rc = m_device.Write(dataAddr + 5, data_temp, sizeof(char) * write_size); if (rc != ((ssize_t)sizeof(char) * write_size)) { fprintf(stdout, "err write_size = %d; rc = %d\n", write_size, rc); return UPDATE_FAIL_READ_F34_QUERIES; } offset += write_size; left_bytes -= write_size; free(data_temp); } while (left_bytes); // Sleep 100 ms and wait for attention. Sleep(100); rc = WaitForIdle(RMI_F34_IDLE_WAIT_MS, false); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); return UPDATE_FAIL_TIMEOUT_WAITING_FOR_ATTN; } //Wait for completion do { Sleep(20); rmi4update_poll(); if (m_flashStatus == SUCCESS){ break; } retry++; } while(retry < 20); if (m_flashStatus != SUCCESS) { fprintf(stdout, "err flash_status = %d\n", m_flashStatus); return UPDATE_FAIL_WRITE_F01_CONTROL_0; } } return UPDATE_SUCCESS; } int RMI4Update::WriteCoreConfigV7() { int transaction_count, remain_block; int transfer_leng = 0; int offset = 0; unsigned char trans_leng_buf[2]; unsigned char cmd_buf[1]; unsigned char off[2] = {0, 0}; unsigned char partition_id; unsigned short dataAddr = m_f34.GetDataBase(); unsigned short left_bytes; unsigned short write_size; unsigned short max_write_size; int rc; int i; int retry = 0; unsigned char *data_temp; /* calculate the count */ partition_id = CORE_CONFIG_PARTITION; remain_block = (m_configBlockCount % m_payloadLength); transaction_count = (m_configBlockCount / m_payloadLength); if (remain_block > 0) transaction_count++; /* set partition id for bootloader 7 */ rc = m_device.Write(dataAddr + 1, &partition_id, sizeof(partition_id)); if (rc != sizeof(partition_id)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; rc = m_device.Write(dataAddr + 2, off, sizeof(off)); if (rc != sizeof(off)) return UPDATE_FAIL_WRITE_INITIAL_ZEROS; for (i = 0; i < transaction_count; i++) { if ((i == (transaction_count -1)) && (remain_block > 0)) transfer_leng = remain_block; else transfer_leng = m_payloadLength; // Set Transfer Length trans_leng_buf[0] = (unsigned char)(transfer_leng & 0xFF); trans_leng_buf[1] = (unsigned char)((transfer_leng & 0xFF00) >> 8); rc = m_device.Write(dataAddr + 3, trans_leng_buf, sizeof(trans_leng_buf)); if (rc != sizeof(trans_leng_buf)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; // Set Command to Write cmd_buf[0] = (unsigned char)CMD_V7_WRITE; rc = m_device.Write(dataAddr + 4, cmd_buf, sizeof(cmd_buf)); if (rc != sizeof(cmd_buf)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; max_write_size = 16; if (max_write_size >= transfer_leng * m_blockSize) max_write_size = transfer_leng * m_blockSize; else if (max_write_size > m_blockSize) max_write_size -= max_write_size % m_blockSize; else max_write_size = m_blockSize; left_bytes = transfer_leng * m_blockSize; do { if (left_bytes / max_write_size) write_size = max_write_size; else write_size = left_bytes; data_temp = (unsigned char *) malloc(sizeof(unsigned char) * write_size); memcpy(data_temp, m_firmwareImage.GetConfigData() + offset, sizeof(char) * write_size); rc = m_device.Write(dataAddr + 5, data_temp, sizeof(char) * write_size); if (rc != ((ssize_t)sizeof(char) * write_size)) { return UPDATE_FAIL_READ_F34_QUERIES; } offset += write_size; left_bytes -= write_size; free(data_temp); } while (left_bytes); // Wait for attention. rc = WaitForIdle(RMI_F34_IDLE_WAIT_MS, false); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); return UPDATE_FAIL_TIMEOUT_WAITING_FOR_ATTN; } //Wait for completion do { Sleep(20); rmi4update_poll(); if (m_flashStatus == SUCCESS){ break; } retry++; } while(retry < 20); if (m_flashStatus != SUCCESS) { fprintf(stdout, "err flash_status = %d\n", m_flashStatus); return UPDATE_FAIL_WRITE_F01_CONTROL_0; } } return UPDATE_SUCCESS; } int RMI4Update::WriteFlashConfigV7() { int transaction_count, remain_block; int transfer_leng = 0; int offset = 0; unsigned char trans_leng_buf[2]; unsigned char cmd_buf[1]; unsigned char off[2] = {0, 0}; unsigned char partition_id; unsigned short dataAddr = m_f34.GetDataBase(); unsigned short left_bytes; unsigned short write_size; unsigned short max_write_size; int rc; int i; int retry = 0; unsigned char *data_temp; unsigned short FlashConfigBlockCount; /* calculate the count */ partition_id = FLASH_CONFIG_PARTITION; FlashConfigBlockCount = m_firmwareImage.GetFlashConfigSize() / m_blockSize; remain_block = (FlashConfigBlockCount % m_payloadLength); transaction_count = (FlashConfigBlockCount / m_payloadLength); if (remain_block > 0) transaction_count++; /* set partition id for bootloader 7 */ rc = m_device.Write(dataAddr + 1, &partition_id, sizeof(partition_id)); if (rc != sizeof(partition_id)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; rc = m_device.Write(dataAddr + 2, off, sizeof(off)); if (rc != sizeof(off)) return UPDATE_FAIL_WRITE_INITIAL_ZEROS; for (i = 0; i < transaction_count; i++) { if ((i == (transaction_count -1)) && (remain_block > 0)) transfer_leng = remain_block; else transfer_leng = m_payloadLength; // Set Transfer Length trans_leng_buf[0] = (unsigned char)(transfer_leng & 0xFF); trans_leng_buf[1] = (unsigned char)((transfer_leng & 0xFF00) >> 8); rc = m_device.Write(dataAddr + 3, trans_leng_buf, sizeof(trans_leng_buf)); if (rc != sizeof(trans_leng_buf)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; // Set Command to Write cmd_buf[0] = (unsigned char)CMD_V7_WRITE; rc = m_device.Write(dataAddr + 4, cmd_buf, sizeof(cmd_buf)); if (rc != sizeof(cmd_buf)) return UPDATE_FAIL_WRITE_FLASH_COMMAND; max_write_size = 16; if (max_write_size >= transfer_leng * m_blockSize) max_write_size = transfer_leng * m_blockSize; else if (max_write_size > m_blockSize) max_write_size -= max_write_size % m_blockSize; else max_write_size = m_blockSize; left_bytes = transfer_leng * m_blockSize; do { if (left_bytes / max_write_size) write_size = max_write_size; else write_size = left_bytes; data_temp = (unsigned char *) malloc(sizeof(unsigned char) * write_size); memcpy(data_temp, m_firmwareImage.GetFlashConfigData() + offset, sizeof(char) * write_size); rc = m_device.Write(dataAddr + 5, data_temp, sizeof(char) * write_size); if (rc != ((ssize_t)sizeof(char) * write_size)) { fprintf(stdout, "err write_size = %d; rc = %d\n", write_size, rc); return UPDATE_FAIL_READ_F34_QUERIES; } offset += write_size; left_bytes -= write_size; free(data_temp); } while (left_bytes); // Wair for attention. rc = WaitForIdle(RMI_F34_IDLE_WAIT_MS, false); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); return UPDATE_FAIL_TIMEOUT_WAITING_FOR_ATTN; } //Wait for completion do { Sleep(20); rmi4update_poll(); if (m_flashStatus == SUCCESS){ break; } retry++; } while(retry < 20); if (m_flashStatus != SUCCESS) { fprintf(stdout, "err flash_status = %d\n", m_flashStatus); return UPDATE_FAIL_WRITE_F01_CONTROL_0; } } return UPDATE_SUCCESS; } int RMI4Update::EraseFirmwareV7() { unsigned char erase_cmd[8] = {0, 0, 0, 0, 0, 0, 0, 0}; int retry = 0; int rc; /* set partition id for bootloader 7 */ erase_cmd[0] = CORE_CODE_PARTITION; /* write bootloader id */ erase_cmd[6] = m_bootloaderID[0]; erase_cmd[7] = m_bootloaderID[1]; if(m_bootloaderID[1] == 8){ /* Set Command to Erase AP for BL8*/ erase_cmd[5] = (unsigned char)CMD_V7_ERASE_AP; } else { /* Set Command to Erase AP for BL7*/ erase_cmd[5] = (unsigned char)CMD_V7_ERASE; } fprintf(stdout, "Erase command : "); for(int i = 0 ;i<8;i++){ fprintf(stdout, "%d ", erase_cmd[i]); } fprintf(stdout, "\n"); rmi4update_poll(); if (!m_inBLmode) return UPDATE_FAIL_DEVICE_NOT_IN_BOOTLOADER; if(m_bootloaderID[1] == 8){ // For BL8 device, we need hold 1 seconds after querying // F34 status to avoid not get attention by following giving // erase command. Sleep(1000); } rc = m_device.Write(m_f34.GetDataBase() + 1, erase_cmd, sizeof(erase_cmd)); if (rc != sizeof(erase_cmd)) return UPDATE_FAIL_WRITE_F01_CONTROL_0; Sleep(100); //Wait from ATTN if(m_bootloaderID[1] == 8){ // Wait for attention for BL8 device. rc = WaitForIdle(RMI_F34_ERASE_V8_WAIT_MS, false); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); return UPDATE_FAIL_TIMEOUT_WAITING_FOR_ATTN; } } do { Sleep(20); rmi4update_poll(); if (m_flashStatus == SUCCESS){ break; } retry++; } while(retry < 20); if (m_flashStatus != SUCCESS) { fprintf(stdout, "err flash_status = %d\n", m_flashStatus); return UPDATE_FAIL_WRITE_F01_CONTROL_0; } if(m_bootloaderID[1] == 7){ // For BL7, we need erase config partition. fprintf(stdout, "Start to erase config\n"); erase_cmd[0] = CORE_CONFIG_PARTITION; erase_cmd[6] = m_bootloaderID[0]; erase_cmd[7] = m_bootloaderID[1]; erase_cmd[5] = (unsigned char)CMD_V7_ERASE; Sleep(100); rmi4update_poll(); if (!m_inBLmode) return UPDATE_FAIL_DEVICE_NOT_IN_BOOTLOADER; rc = m_device.Write(m_f34.GetDataBase() + 1, erase_cmd, sizeof(erase_cmd)); if (rc != sizeof(erase_cmd)) return UPDATE_FAIL_WRITE_F01_CONTROL_0; //Wait from ATTN Sleep(100); rc = WaitForIdle(RMI_F34_ERASE_WAIT_MS, true); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); return UPDATE_FAIL_TIMEOUT_WAITING_FOR_ATTN; } do { Sleep(20); rmi4update_poll(); if (m_flashStatus == SUCCESS){ break; } retry++; } while(retry < 20); if (m_flashStatus != SUCCESS) { fprintf(stdout, "err flash_status = %d\n", m_flashStatus); return UPDATE_FAIL_WRITE_F01_CONTROL_0; } } return UPDATE_SUCCESS; } int RMI4Update::EnterFlashProgrammingV7() { int rc; unsigned char f34_status; rc = m_device.Read(m_f34.GetDataBase(), &f34_status, sizeof(unsigned char)); m_inBLmode = f34_status & 0x80; if(!m_inBLmode){ fprintf(stdout, "Not in BL mode, going to BL mode...\n"); unsigned char EnterCmd[8] = {0, 0, 0, 0, 0, 0, 0, 0}; int retry = 0; /* set partition id for bootloader 7 */ EnterCmd[0] = BOOTLOADER_PARTITION; /* write bootloader id */ EnterCmd[6] = m_bootloaderID[0]; EnterCmd[7] = m_bootloaderID[1]; // Set Command to EnterBL EnterCmd[5] = (unsigned char)CMD_V7_ENTER_BL; rc = m_device.Write(m_f34.GetDataBase() + 1, EnterCmd, sizeof(EnterCmd)); if (rc != sizeof(EnterCmd)) return UPDATE_FAIL_WRITE_F01_CONTROL_0; rc = WaitForIdle(RMI_F34_ENABLE_WAIT_MS, false); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); return UPDATE_FAIL_TIMEOUT_WAITING_FOR_ATTN; } //Wait from ATTN do { Sleep(20); rmi4update_poll(); if (m_flashStatus == SUCCESS){ break; } retry++; } while(retry < 20); if (m_flashStatus != SUCCESS) { fprintf(stdout, "err flash_status = %d\n", m_flashStatus); return UPDATE_FAIL_WRITE_F01_CONTROL_0; } Sleep(RMI_F34_ENABLE_WAIT_MS); fprintf(stdout, "%s\n", __func__); rmi4update_poll(); if (!m_inBLmode) return UPDATE_FAIL_DEVICE_NOT_IN_BOOTLOADER; } else fprintf(stdout, "Already in BL mode, skip...\n"); if(m_device.GetDeviceType() != RMI_DEVICE_TYPE_TOUCHPAD) { // workaround for touchscreen only fprintf(stdout, "Erase in BL mode\n"); rc = EraseFirmwareV7(); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "%s: %s\n", __func__, update_err_to_string(rc)); return UPDATE_FAIL_ERASE_ALL; } fprintf(stdout, "Erase in BL mode end\n"); m_device.RebindDriver(); } Sleep(RMI_F34_ENABLE_WAIT_MS); rc = FindUpdateFunctions(); if (rc != UPDATE_SUCCESS) return rc; rc = ReadF34Queries(); if (rc != UPDATE_SUCCESS) return rc; return UPDATE_SUCCESS; } int RMI4Update::EnterFlashProgramming() { int rc; unsigned char f01Control_0; const unsigned char enableProg = RMI_F34_ENABLE_FLASH_PROG; rc = WriteBootloaderID(); if (rc != UPDATE_SUCCESS) return rc; fprintf(stdout, "Enabling flash programming.\n"); rc = m_device.Write(m_f34StatusAddr, &enableProg, 1); if (rc != 1) return UPDATE_FAIL_ENABLE_FLASH_PROGRAMMING; Sleep(RMI_F34_ENABLE_WAIT_MS); if(m_device.GetDeviceType() != RMI_DEVICE_TYPE_TOUCHPAD) { fprintf(stdout, "not TouchPad, rebind driver here\n"); m_device.RebindDriver(); } rc = WaitForIdle(0); if (rc != UPDATE_SUCCESS) return UPDATE_FAIL_NOT_IN_IDLE_STATE; if (!m_programEnabled) return UPDATE_FAIL_PROGRAMMING_NOT_ENABLED; fprintf(stdout, "Programming is enabled.\n"); rc = FindUpdateFunctions(); if (rc != UPDATE_SUCCESS) return rc; rc = m_device.Read(m_f01.GetDataBase(), &m_deviceStatus, 1); if (rc != 1) return UPDATE_FAIL_READ_DEVICE_STATUS; if(m_f34.GetFunctionVersion() > 0x1){ if (!RMI_F01_STATUS_BOOTLOADER_v7(m_deviceStatus)) return UPDATE_FAIL_DEVICE_NOT_IN_BOOTLOADER; fprintf(stdout, "Already in BL mode V7\n"); } else { if (!RMI_F01_STATUS_BOOTLOADER(m_deviceStatus)) return UPDATE_FAIL_DEVICE_NOT_IN_BOOTLOADER; fprintf(stdout, "Already in BL mode\n"); } rc = ReadF34Queries(); if (rc != UPDATE_SUCCESS) return rc; rc = m_device.Read(m_f01.GetControlBase(), &f01Control_0, 1); if (rc != 1) return UPDATE_FAIL_READ_F01_CONTROL_0; f01Control_0 |= RMI_F01_CRTL0_NOSLEEP_BIT; f01Control_0 = (f01Control_0 & ~RMI_F01_CTRL0_SLEEP_MODE_MASK) | RMI_SLEEP_MODE_NORMAL; rc = m_device.Write(m_f01.GetControlBase(), &f01Control_0, 1); if (rc != 1) return UPDATE_FAIL_WRITE_F01_CONTROL_0; return UPDATE_SUCCESS; } int RMI4Update::WriteBlocks(unsigned char *block, unsigned short count, unsigned char cmd) { int blockNum; unsigned char zeros[] = { 0, 0 }; int rc; unsigned short addr; unsigned char *blockWithCmd = (unsigned char *)alloca(m_blockSize + 1); if (m_f34.GetFunctionVersion() == 0x1) addr = m_f34.GetDataBase() + RMI_F34_BLOCK_DATA_V1_OFFSET; else addr = m_f34.GetDataBase() + RMI_F34_BLOCK_DATA_OFFSET; rc = m_device.Write(m_f34.GetDataBase(), zeros, 2); if (rc != 2) return UPDATE_FAIL_WRITE_INITIAL_ZEROS; for (blockNum = 0; blockNum < count; ++blockNum) { if (m_writeBlockWithCmd) { memcpy(blockWithCmd, block, m_blockSize); blockWithCmd[m_blockSize] = cmd; rc = m_device.Write(addr, blockWithCmd, m_blockSize + 1); if (rc != m_blockSize + 1) { fprintf(stderr, "failed to write block %d\n", blockNum); return UPDATE_FAIL_WRITE_BLOCK; } } else { rc = m_device.Write(addr, block, m_blockSize); if (rc != m_blockSize) { fprintf(stderr, "failed to write block %d\n", blockNum); return UPDATE_FAIL_WRITE_BLOCK; } rc = m_device.Write(m_f34StatusAddr, &cmd, 1); if (rc != 1) { fprintf(stderr, "failed to write command for block %d\n", blockNum); return UPDATE_FAIL_WRITE_FLASH_COMMAND; } } rc = WaitForIdle(RMI_F34_IDLE_WAIT_MS, !m_writeBlockWithCmd); if (rc != UPDATE_SUCCESS) { fprintf(stderr, "failed to go into idle after writing block %d\n", blockNum); return UPDATE_FAIL_NOT_IN_IDLE_STATE; } block += m_blockSize; } return UPDATE_SUCCESS; } /* * This is a limited implementation of WaitForIdle which assumes WaitForAttention is supported * this will be true for HID, but other protocols will need to revert polling. Polling * is not implemented yet. */ int RMI4Update::WaitForIdle(int timeout_ms, bool readF34OnSucess) { int rc = 0; struct timeval tv; if (timeout_ms > 0) { tv.tv_sec = timeout_ms / 1000; tv.tv_usec = (timeout_ms % 1000) * 1000; rc = m_device.WaitForAttention(&tv, m_f34.GetInterruptMask()); if (rc == -ETIMEDOUT){ /* * If for some reason we are not getting attention reports for HID devices * then we can still continue after the timeout and read F34 status * but if we have to wait for the timeout to ellapse everytime then this * will be slow. If this message shows up a lot then something is wrong * with receiving attention reports and that should be fixed. */ fprintf(stderr, "RMI4Update::WaitForIdle Timed out waiting for attn report\n"); } } if (rc <= 0 || readF34OnSucess) { rc = ReadF34Controls(); if (rc != UPDATE_SUCCESS) return rc; if (!m_f34Status && !m_f34Command) { if (!m_programEnabled) { fprintf(stderr, "RMI4Update::WaitForIdle Bootloader is idle but program_enabled bit isn't set.\n"); return UPDATE_FAIL_PROGRAMMING_NOT_ENABLED; } else { return UPDATE_SUCCESS; } } fprintf(stderr, "RMI4Update::WaitForIdle\n"); fprintf(stderr, " ERROR: Waiting for idle status.\n"); fprintf(stderr, " Command: %#04x\n", m_f34Command); fprintf(stderr, " Status: %#04x\n", m_f34Status); fprintf(stderr, " Enabled: %d\n", m_programEnabled); fprintf(stderr, " Idle: %d\n", !m_f34Command && !m_f34Status); return UPDATE_FAIL_NOT_IN_IDLE_STATE; } return UPDATE_SUCCESS; }