aboutsummaryrefslogtreecommitdiff
path: root/files/unit_test/scale_test.cc
blob: d97d54a8830fb2620c6f19c55dcd16c364b58122 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*
 *  Copyright 2011 The LibYuv Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS. All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <stdlib.h>
#include <time.h>

#include "../unit_test/unit_test.h"
#include "libyuv/cpu_id.h"
#include "libyuv/scale.h"
#include "libyuv/scale_row.h"  // For ScaleRowDown2Box_Odd_C

#define STRINGIZE(line) #line
#define FILELINESTR(file, line) file ":" STRINGIZE(line)

namespace libyuv {

// Test scaling with C vs Opt and return maximum pixel difference. 0 = exact.
static int TestFilter(int src_width,
                      int src_height,
                      int dst_width,
                      int dst_height,
                      FilterMode f,
                      int benchmark_iterations,
                      int disable_cpu_flags,
                      int benchmark_cpu_info) {
  if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
    return 0;
  }

  int i, j;
  int src_width_uv = (Abs(src_width) + 1) >> 1;
  int src_height_uv = (Abs(src_height) + 1) >> 1;

  int64_t src_y_plane_size = (Abs(src_width)) * (Abs(src_height));
  int64_t src_uv_plane_size = (src_width_uv) * (src_height_uv);

  int src_stride_y = Abs(src_width);
  int src_stride_uv = src_width_uv;

  align_buffer_page_end(src_y, src_y_plane_size);
  align_buffer_page_end(src_u, src_uv_plane_size);
  align_buffer_page_end(src_v, src_uv_plane_size);
  if (!src_y || !src_u || !src_v) {
    printf("Skipped.  Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
    return 0;
  }
  MemRandomize(src_y, src_y_plane_size);
  MemRandomize(src_u, src_uv_plane_size);
  MemRandomize(src_v, src_uv_plane_size);

  int dst_width_uv = (dst_width + 1) >> 1;
  int dst_height_uv = (dst_height + 1) >> 1;

  int64_t dst_y_plane_size = (dst_width) * (dst_height);
  int64_t dst_uv_plane_size = (dst_width_uv) * (dst_height_uv);

  int dst_stride_y = dst_width;
  int dst_stride_uv = dst_width_uv;

  align_buffer_page_end(dst_y_c, dst_y_plane_size);
  align_buffer_page_end(dst_u_c, dst_uv_plane_size);
  align_buffer_page_end(dst_v_c, dst_uv_plane_size);
  align_buffer_page_end(dst_y_opt, dst_y_plane_size);
  align_buffer_page_end(dst_u_opt, dst_uv_plane_size);
  align_buffer_page_end(dst_v_opt, dst_uv_plane_size);
  if (!dst_y_c || !dst_u_c || !dst_v_c || !dst_y_opt || !dst_u_opt ||
      !dst_v_opt) {
    printf("Skipped.  Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
    return 0;
  }

  MaskCpuFlags(disable_cpu_flags);  // Disable all CPU optimization.
  double c_time = get_time();
  I420Scale(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv,
            src_width, src_height, dst_y_c, dst_stride_y, dst_u_c,
            dst_stride_uv, dst_v_c, dst_stride_uv, dst_width, dst_height, f);
  c_time = (get_time() - c_time);

  MaskCpuFlags(benchmark_cpu_info);  // Enable all CPU optimization.
  double opt_time = get_time();
  for (i = 0; i < benchmark_iterations; ++i) {
    I420Scale(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv,
              src_width, src_height, dst_y_opt, dst_stride_y, dst_u_opt,
              dst_stride_uv, dst_v_opt, dst_stride_uv, dst_width, dst_height,
              f);
  }
  opt_time = (get_time() - opt_time) / benchmark_iterations;
  // Report performance of C vs OPT.
  printf("filter %d - %8d us C - %8d us OPT\n", f,
         static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6));

  // C version may be a little off from the optimized. Order of
  //  operations may introduce rounding somewhere. So do a difference
  //  of the buffers and look to see that the max difference is not
  //  over 3.
  int max_diff = 0;
  for (i = 0; i < (dst_height); ++i) {
    for (j = 0; j < (dst_width); ++j) {
      int abs_diff = Abs(dst_y_c[(i * dst_stride_y) + j] -
                         dst_y_opt[(i * dst_stride_y) + j]);
      if (abs_diff > max_diff) {
        max_diff = abs_diff;
      }
    }
  }

  for (i = 0; i < (dst_height_uv); ++i) {
    for (j = 0; j < (dst_width_uv); ++j) {
      int abs_diff = Abs(dst_u_c[(i * dst_stride_uv) + j] -
                         dst_u_opt[(i * dst_stride_uv) + j]);
      if (abs_diff > max_diff) {
        max_diff = abs_diff;
      }
      abs_diff = Abs(dst_v_c[(i * dst_stride_uv) + j] -
                     dst_v_opt[(i * dst_stride_uv) + j]);
      if (abs_diff > max_diff) {
        max_diff = abs_diff;
      }
    }
  }

  free_aligned_buffer_page_end(dst_y_c);
  free_aligned_buffer_page_end(dst_u_c);
  free_aligned_buffer_page_end(dst_v_c);
  free_aligned_buffer_page_end(dst_y_opt);
  free_aligned_buffer_page_end(dst_u_opt);
  free_aligned_buffer_page_end(dst_v_opt);
  free_aligned_buffer_page_end(src_y);
  free_aligned_buffer_page_end(src_u);
  free_aligned_buffer_page_end(src_v);

  return max_diff;
}

// Test scaling with 8 bit C vs 16 bit C and return maximum pixel difference.
// 0 = exact.
static int TestFilter_16(int src_width,
                         int src_height,
                         int dst_width,
                         int dst_height,
                         FilterMode f,
                         int benchmark_iterations,
                         int disable_cpu_flags,
                         int benchmark_cpu_info) {
  if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
    return 0;
  }

  int i;
  int src_width_uv = (Abs(src_width) + 1) >> 1;
  int src_height_uv = (Abs(src_height) + 1) >> 1;

  int64_t src_y_plane_size = (Abs(src_width)) * (Abs(src_height));
  int64_t src_uv_plane_size = (src_width_uv) * (src_height_uv);

  int src_stride_y = Abs(src_width);
  int src_stride_uv = src_width_uv;

  align_buffer_page_end(src_y, src_y_plane_size);
  align_buffer_page_end(src_u, src_uv_plane_size);
  align_buffer_page_end(src_v, src_uv_plane_size);
  align_buffer_page_end(src_y_16, src_y_plane_size * 2);
  align_buffer_page_end(src_u_16, src_uv_plane_size * 2);
  align_buffer_page_end(src_v_16, src_uv_plane_size * 2);
  if (!src_y || !src_u || !src_v || !src_y_16 || !src_u_16 || !src_v_16) {
    printf("Skipped.  Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
    return 0;
  }
  uint16_t* p_src_y_16 = reinterpret_cast<uint16_t*>(src_y_16);
  uint16_t* p_src_u_16 = reinterpret_cast<uint16_t*>(src_u_16);
  uint16_t* p_src_v_16 = reinterpret_cast<uint16_t*>(src_v_16);

  MemRandomize(src_y, src_y_plane_size);
  MemRandomize(src_u, src_uv_plane_size);
  MemRandomize(src_v, src_uv_plane_size);

  for (i = 0; i < src_y_plane_size; ++i) {
    p_src_y_16[i] = src_y[i];
  }
  for (i = 0; i < src_uv_plane_size; ++i) {
    p_src_u_16[i] = src_u[i];
    p_src_v_16[i] = src_v[i];
  }

  int dst_width_uv = (dst_width + 1) >> 1;
  int dst_height_uv = (dst_height + 1) >> 1;

  int dst_y_plane_size = (dst_width) * (dst_height);
  int dst_uv_plane_size = (dst_width_uv) * (dst_height_uv);

  int dst_stride_y = dst_width;
  int dst_stride_uv = dst_width_uv;

  align_buffer_page_end(dst_y_8, dst_y_plane_size);
  align_buffer_page_end(dst_u_8, dst_uv_plane_size);
  align_buffer_page_end(dst_v_8, dst_uv_plane_size);
  align_buffer_page_end(dst_y_16, dst_y_plane_size * 2);
  align_buffer_page_end(dst_u_16, dst_uv_plane_size * 2);
  align_buffer_page_end(dst_v_16, dst_uv_plane_size * 2);

  uint16_t* p_dst_y_16 = reinterpret_cast<uint16_t*>(dst_y_16);
  uint16_t* p_dst_u_16 = reinterpret_cast<uint16_t*>(dst_u_16);
  uint16_t* p_dst_v_16 = reinterpret_cast<uint16_t*>(dst_v_16);

  MaskCpuFlags(disable_cpu_flags);  // Disable all CPU optimization.
  I420Scale(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv,
            src_width, src_height, dst_y_8, dst_stride_y, dst_u_8,
            dst_stride_uv, dst_v_8, dst_stride_uv, dst_width, dst_height, f);
  MaskCpuFlags(benchmark_cpu_info);  // Enable all CPU optimization.
  for (i = 0; i < benchmark_iterations; ++i) {
    I420Scale_16(p_src_y_16, src_stride_y, p_src_u_16, src_stride_uv,
                 p_src_v_16, src_stride_uv, src_width, src_height, p_dst_y_16,
                 dst_stride_y, p_dst_u_16, dst_stride_uv, p_dst_v_16,
                 dst_stride_uv, dst_width, dst_height, f);
  }

  // Expect an exact match.
  int max_diff = 0;
  for (i = 0; i < dst_y_plane_size; ++i) {
    int abs_diff = Abs(dst_y_8[i] - p_dst_y_16[i]);
    if (abs_diff > max_diff) {
      max_diff = abs_diff;
    }
  }
  for (i = 0; i < dst_uv_plane_size; ++i) {
    int abs_diff = Abs(dst_u_8[i] - p_dst_u_16[i]);
    if (abs_diff > max_diff) {
      max_diff = abs_diff;
    }
    abs_diff = Abs(dst_v_8[i] - p_dst_v_16[i]);
    if (abs_diff > max_diff) {
      max_diff = abs_diff;
    }
  }

  free_aligned_buffer_page_end(dst_y_8);
  free_aligned_buffer_page_end(dst_u_8);
  free_aligned_buffer_page_end(dst_v_8);
  free_aligned_buffer_page_end(dst_y_16);
  free_aligned_buffer_page_end(dst_u_16);
  free_aligned_buffer_page_end(dst_v_16);
  free_aligned_buffer_page_end(src_y);
  free_aligned_buffer_page_end(src_u);
  free_aligned_buffer_page_end(src_v);
  free_aligned_buffer_page_end(src_y_16);
  free_aligned_buffer_page_end(src_u_16);
  free_aligned_buffer_page_end(src_v_16);

  return max_diff;
}

// The following adjustments in dimensions ensure the scale factor will be
// exactly achieved.
// 2 is chroma subsample.
#define DX(x, nom, denom) static_cast<int>(((Abs(x) / nom + 1) / 2) * nom * 2)
#define SX(x, nom, denom) static_cast<int>(((x / nom + 1) / 2) * denom * 2)

#define TEST_FACTOR1(name, filter, nom, denom, max_diff)                     \
  TEST_F(LibYUVScaleTest, ScaleDownBy##name##_##filter) {                    \
    int diff = TestFilter(                                                   \
        SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
        DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
        kFilter##filter, benchmark_iterations_, disable_cpu_flags_,          \
        benchmark_cpu_info_);                                                \
    EXPECT_LE(diff, max_diff);                                               \
  }                                                                          \
  TEST_F(LibYUVScaleTest, ScaleDownBy##name##_##filter##_16) {               \
    int diff = TestFilter_16(                                                \
        SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
        DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
        kFilter##filter, benchmark_iterations_, disable_cpu_flags_,          \
        benchmark_cpu_info_);                                                \
    EXPECT_LE(diff, max_diff);                                               \
  }

// Test a scale factor with all 4 filters.  Expect unfiltered to be exact, but
// filtering is different fixed point implementations for SSSE3, Neon and C.
#define TEST_FACTOR(name, nom, denom, boxdiff) \
  TEST_FACTOR1(name, None, nom, denom, 0)      \
  TEST_FACTOR1(name, Linear, nom, denom, 3)    \
  TEST_FACTOR1(name, Bilinear, nom, denom, 3)  \
  TEST_FACTOR1(name, Box, nom, denom, boxdiff)

TEST_FACTOR(2, 1, 2, 0)
TEST_FACTOR(4, 1, 4, 0)
TEST_FACTOR(8, 1, 8, 0)
TEST_FACTOR(3by4, 3, 4, 1)
TEST_FACTOR(3by8, 3, 8, 1)
TEST_FACTOR(3, 1, 3, 0)
#undef TEST_FACTOR1
#undef TEST_FACTOR
#undef SX
#undef DX

#define TEST_SCALETO1(name, width, height, filter, max_diff)                  \
  TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter) {            \
    int diff = TestFilter(benchmark_width_, benchmark_height_, width, height, \
                          kFilter##filter, benchmark_iterations_,             \
                          disable_cpu_flags_, benchmark_cpu_info_);           \
    EXPECT_LE(diff, max_diff);                                                \
  }                                                                           \
  TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter) {          \
    int diff = TestFilter(width, height, Abs(benchmark_width_),               \
                          Abs(benchmark_height_), kFilter##filter,            \
                          benchmark_iterations_, disable_cpu_flags_,          \
                          benchmark_cpu_info_);                               \
    EXPECT_LE(diff, max_diff);                                                \
  }                                                                           \
  TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter##_16) {       \
    int diff = TestFilter_16(benchmark_width_, benchmark_height_, width,      \
                             height, kFilter##filter, benchmark_iterations_,  \
                             disable_cpu_flags_, benchmark_cpu_info_);        \
    EXPECT_LE(diff, max_diff);                                                \
  }                                                                           \
  TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter##_16) {     \
    int diff = TestFilter_16(width, height, Abs(benchmark_width_),            \
                             Abs(benchmark_height_), kFilter##filter,         \
                             benchmark_iterations_, disable_cpu_flags_,       \
                             benchmark_cpu_info_);                            \
    EXPECT_LE(diff, max_diff);                                                \
  }

// Test scale to a specified size with all 4 filters.
#define TEST_SCALETO(name, width, height)         \
  TEST_SCALETO1(name, width, height, None, 0)     \
  TEST_SCALETO1(name, width, height, Linear, 3)   \
  TEST_SCALETO1(name, width, height, Bilinear, 3) \
  TEST_SCALETO1(name, width, height, Box, 3)

TEST_SCALETO(Scale, 1, 1)
TEST_SCALETO(Scale, 320, 240)
TEST_SCALETO(Scale, 569, 480)
TEST_SCALETO(Scale, 640, 360)
TEST_SCALETO(Scale, 1280, 720)
TEST_SCALETO(Scale, 1920, 1080)
#undef TEST_SCALETO1
#undef TEST_SCALETO

#ifdef HAS_SCALEROWDOWN2_SSSE3
TEST_F(LibYUVScaleTest, TestScaleRowDown2Box_Odd_SSSE3) {
  SIMD_ALIGNED(uint8_t orig_pixels[128 * 2]);
  SIMD_ALIGNED(uint8_t dst_pixels_opt[64]);
  SIMD_ALIGNED(uint8_t dst_pixels_c[64]);
  memset(orig_pixels, 0, sizeof(orig_pixels));
  memset(dst_pixels_opt, 0, sizeof(dst_pixels_opt));
  memset(dst_pixels_c, 0, sizeof(dst_pixels_c));

  int has_ssse3 = TestCpuFlag(kCpuHasSSSE3);
  if (!has_ssse3) {
    printf("Warning SSSE3 not detected; Skipping test.\n");
  } else {
    // TL.
    orig_pixels[0] = 255u;
    orig_pixels[1] = 0u;
    orig_pixels[128 + 0] = 0u;
    orig_pixels[128 + 1] = 0u;
    // TR.
    orig_pixels[2] = 0u;
    orig_pixels[3] = 100u;
    orig_pixels[128 + 2] = 0u;
    orig_pixels[128 + 3] = 0u;
    // BL.
    orig_pixels[4] = 0u;
    orig_pixels[5] = 0u;
    orig_pixels[128 + 4] = 50u;
    orig_pixels[128 + 5] = 0u;
    // BR.
    orig_pixels[6] = 0u;
    orig_pixels[7] = 0u;
    orig_pixels[128 + 6] = 0u;
    orig_pixels[128 + 7] = 20u;
    // Odd.
    orig_pixels[126] = 4u;
    orig_pixels[127] = 255u;
    orig_pixels[128 + 126] = 16u;
    orig_pixels[128 + 127] = 255u;

    // Test regular half size.
    ScaleRowDown2Box_C(orig_pixels, 128, dst_pixels_c, 64);

    EXPECT_EQ(64u, dst_pixels_c[0]);
    EXPECT_EQ(25u, dst_pixels_c[1]);
    EXPECT_EQ(13u, dst_pixels_c[2]);
    EXPECT_EQ(5u, dst_pixels_c[3]);
    EXPECT_EQ(0u, dst_pixels_c[4]);
    EXPECT_EQ(133u, dst_pixels_c[63]);

    // Test Odd width version - Last pixel is just 1 horizontal pixel.
    ScaleRowDown2Box_Odd_C(orig_pixels, 128, dst_pixels_c, 64);

    EXPECT_EQ(64u, dst_pixels_c[0]);
    EXPECT_EQ(25u, dst_pixels_c[1]);
    EXPECT_EQ(13u, dst_pixels_c[2]);
    EXPECT_EQ(5u, dst_pixels_c[3]);
    EXPECT_EQ(0u, dst_pixels_c[4]);
    EXPECT_EQ(10u, dst_pixels_c[63]);

    // Test one pixel less, should skip the last pixel.
    memset(dst_pixels_c, 0, sizeof(dst_pixels_c));
    ScaleRowDown2Box_Odd_C(orig_pixels, 128, dst_pixels_c, 63);

    EXPECT_EQ(64u, dst_pixels_c[0]);
    EXPECT_EQ(25u, dst_pixels_c[1]);
    EXPECT_EQ(13u, dst_pixels_c[2]);
    EXPECT_EQ(5u, dst_pixels_c[3]);
    EXPECT_EQ(0u, dst_pixels_c[4]);
    EXPECT_EQ(0u, dst_pixels_c[63]);

    // Test regular half size SSSE3.
    ScaleRowDown2Box_SSSE3(orig_pixels, 128, dst_pixels_opt, 64);

    EXPECT_EQ(64u, dst_pixels_opt[0]);
    EXPECT_EQ(25u, dst_pixels_opt[1]);
    EXPECT_EQ(13u, dst_pixels_opt[2]);
    EXPECT_EQ(5u, dst_pixels_opt[3]);
    EXPECT_EQ(0u, dst_pixels_opt[4]);
    EXPECT_EQ(133u, dst_pixels_opt[63]);

    // Compare C and SSSE3 match.
    ScaleRowDown2Box_Odd_C(orig_pixels, 128, dst_pixels_c, 64);
    ScaleRowDown2Box_Odd_SSSE3(orig_pixels, 128, dst_pixels_opt, 64);
    for (int i = 0; i < 64; ++i) {
      EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
    }
  }
}
#endif  // HAS_SCALEROWDOWN2_SSSE3

extern "C" void ScaleRowUp2_16_NEON(const uint16_t* src_ptr,
                                    ptrdiff_t src_stride,
                                    uint16_t* dst,
                                    int dst_width);
extern "C" void ScaleRowUp2_16_MMI(const uint16_t* src_ptr,
                                   ptrdiff_t src_stride,
                                   uint16_t* dst,
                                   int dst_width);
extern "C" void ScaleRowUp2_16_C(const uint16_t* src_ptr,
                                 ptrdiff_t src_stride,
                                 uint16_t* dst,
                                 int dst_width);

TEST_F(LibYUVScaleTest, TestScaleRowUp2_16) {
  SIMD_ALIGNED(uint16_t orig_pixels[640 * 2 + 1]);  // 2 rows + 1 pixel overrun.
  SIMD_ALIGNED(uint16_t dst_pixels_opt[1280]);
  SIMD_ALIGNED(uint16_t dst_pixels_c[1280]);

  memset(orig_pixels, 0, sizeof(orig_pixels));
  memset(dst_pixels_opt, 1, sizeof(dst_pixels_opt));
  memset(dst_pixels_c, 2, sizeof(dst_pixels_c));

  for (int i = 0; i < 640 * 2 + 1; ++i) {
    orig_pixels[i] = i;
  }
  ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_c[0], 1280);
  for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__)
    int has_neon = TestCpuFlag(kCpuHasNEON);
    if (has_neon) {
      ScaleRowUp2_16_NEON(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
    } else {
      ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
    }
#elif !defined(LIBYUV_DISABLE_MMI) && defined(_MIPS_ARCH_LOONGSON3A)
    int has_mmi = TestCpuFlag(kCpuHasMMI);
    if (has_mmi) {
      ScaleRowUp2_16_MMI(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
    } else {
      ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
    }
#else
    ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
#endif
  }

  for (int i = 0; i < 1280; ++i) {
    EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
  }
  EXPECT_EQ(dst_pixels_c[0], (0 * 9 + 1 * 3 + 640 * 3 + 641 * 1 + 8) / 16);
  EXPECT_EQ(dst_pixels_c[1279], 800);
}

extern "C" void ScaleRowDown2Box_16_NEON(const uint16_t* src_ptr,
                                         ptrdiff_t src_stride,
                                         uint16_t* dst,
                                         int dst_width);

TEST_F(LibYUVScaleTest, TestScaleRowDown2Box_16) {
  SIMD_ALIGNED(uint16_t orig_pixels[2560 * 2]);
  SIMD_ALIGNED(uint16_t dst_pixels_c[1280]);
  SIMD_ALIGNED(uint16_t dst_pixels_opt[1280]);

  memset(orig_pixels, 0, sizeof(orig_pixels));
  memset(dst_pixels_c, 1, sizeof(dst_pixels_c));
  memset(dst_pixels_opt, 2, sizeof(dst_pixels_opt));

  for (int i = 0; i < 2560 * 2; ++i) {
    orig_pixels[i] = i;
  }
  ScaleRowDown2Box_16_C(&orig_pixels[0], 2560, &dst_pixels_c[0], 1280);
  for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__)
    int has_neon = TestCpuFlag(kCpuHasNEON);
    if (has_neon) {
      ScaleRowDown2Box_16_NEON(&orig_pixels[0], 2560, &dst_pixels_opt[0], 1280);
    } else {
      ScaleRowDown2Box_16_C(&orig_pixels[0], 2560, &dst_pixels_opt[0], 1280);
    }
#else
    ScaleRowDown2Box_16_C(&orig_pixels[0], 2560, &dst_pixels_opt[0], 1280);
#endif
  }

  for (int i = 0; i < 1280; ++i) {
    EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
  }

  EXPECT_EQ(dst_pixels_c[0], (0 + 1 + 2560 + 2561 + 2) / 4);
  EXPECT_EQ(dst_pixels_c[1279], 3839);
}

// Test scaling plane with 8 bit C vs 16 bit C and return maximum pixel
// difference.
// 0 = exact.
static int TestPlaneFilter_16(int src_width,
                              int src_height,
                              int dst_width,
                              int dst_height,
                              FilterMode f,
                              int benchmark_iterations,
                              int disable_cpu_flags,
                              int benchmark_cpu_info) {
  if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
    return 0;
  }

  int i;
  int64_t src_y_plane_size = (Abs(src_width)) * (Abs(src_height));
  int src_stride_y = Abs(src_width);
  int dst_y_plane_size = dst_width * dst_height;
  int dst_stride_y = dst_width;

  align_buffer_page_end(src_y, src_y_plane_size);
  align_buffer_page_end(src_y_16, src_y_plane_size * 2);
  align_buffer_page_end(dst_y_8, dst_y_plane_size);
  align_buffer_page_end(dst_y_16, dst_y_plane_size * 2);
  uint16_t* p_src_y_16 = reinterpret_cast<uint16_t*>(src_y_16);
  uint16_t* p_dst_y_16 = reinterpret_cast<uint16_t*>(dst_y_16);

  MemRandomize(src_y, src_y_plane_size);
  memset(dst_y_8, 0, dst_y_plane_size);
  memset(dst_y_16, 1, dst_y_plane_size * 2);

  for (i = 0; i < src_y_plane_size; ++i) {
    p_src_y_16[i] = src_y[i] & 255;
  }

  MaskCpuFlags(disable_cpu_flags);  // Disable all CPU optimization.
  ScalePlane(src_y, src_stride_y, src_width, src_height, dst_y_8, dst_stride_y,
             dst_width, dst_height, f);
  MaskCpuFlags(benchmark_cpu_info);  // Enable all CPU optimization.

  for (i = 0; i < benchmark_iterations; ++i) {
    ScalePlane_16(p_src_y_16, src_stride_y, src_width, src_height, p_dst_y_16,
                  dst_stride_y, dst_width, dst_height, f);
  }

  // Expect an exact match.
  int max_diff = 0;
  for (i = 0; i < dst_y_plane_size; ++i) {
    int abs_diff = Abs(dst_y_8[i] - p_dst_y_16[i]);
    if (abs_diff > max_diff) {
      max_diff = abs_diff;
    }
  }

  free_aligned_buffer_page_end(dst_y_8);
  free_aligned_buffer_page_end(dst_y_16);
  free_aligned_buffer_page_end(src_y);
  free_aligned_buffer_page_end(src_y_16);

  return max_diff;
}

// The following adjustments in dimensions ensure the scale factor will be
// exactly achieved.
// 2 is chroma subsample.
#define DX(x, nom, denom) static_cast<int>(((Abs(x) / nom + 1) / 2) * nom * 2)
#define SX(x, nom, denom) static_cast<int>(((x / nom + 1) / 2) * denom * 2)

#define TEST_FACTOR1(name, filter, nom, denom, max_diff)                     \
  TEST_F(LibYUVScaleTest, ScalePlaneDownBy##name##_##filter##_16) {          \
    int diff = TestPlaneFilter_16(                                           \
        SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
        DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
        kFilter##filter, benchmark_iterations_, disable_cpu_flags_,          \
        benchmark_cpu_info_);                                                \
    EXPECT_LE(diff, max_diff);                                               \
  }

// Test a scale factor with all 4 filters.  Expect unfiltered to be exact, but
// filtering is different fixed point implementations for SSSE3, Neon and C.
#define TEST_FACTOR(name, nom, denom, boxdiff)      \
  TEST_FACTOR1(name, None, nom, denom, 0)           \
  TEST_FACTOR1(name, Linear, nom, denom, boxdiff)   \
  TEST_FACTOR1(name, Bilinear, nom, denom, boxdiff) \
  TEST_FACTOR1(name, Box, nom, denom, boxdiff)

TEST_FACTOR(2, 1, 2, 0)
TEST_FACTOR(4, 1, 4, 0)
TEST_FACTOR(8, 1, 8, 0)
TEST_FACTOR(3by4, 3, 4, 1)
TEST_FACTOR(3by8, 3, 8, 1)
TEST_FACTOR(3, 1, 3, 0)
#undef TEST_FACTOR1
#undef TEST_FACTOR
#undef SX
#undef DX
}  // namespace libyuv