From 678702573531f19ae36847a6a07257aaae623fbe Mon Sep 17 00:00:00 2001 From: Sadaf Ebrahimi Date: Fri, 25 Aug 2023 16:27:50 +0000 Subject: Move libyuv/files/ directly under libyuv Test: TreeHugger Merged-In: I773d1ae01539cc5d200768b526f10b2922567f72 Change-Id: I4ba1f1e781d7fd3ad96639dfdc08f654e45ae3d3 --- source/scale_uv.cc | 1171 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1171 insertions(+) create mode 100644 source/scale_uv.cc (limited to 'source/scale_uv.cc') diff --git a/source/scale_uv.cc b/source/scale_uv.cc new file mode 100644 index 00000000..1556071d --- /dev/null +++ b/source/scale_uv.cc @@ -0,0 +1,1171 @@ +/* + * Copyright 2020 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/scale.h" + +#include +#include + +#include "libyuv/cpu_id.h" +#include "libyuv/planar_functions.h" // For CopyUV +#include "libyuv/row.h" +#include "libyuv/scale_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Macros to enable specialized scalers + +#ifndef HAS_SCALEUVDOWN2 +#define HAS_SCALEUVDOWN2 1 +#endif +#ifndef HAS_SCALEUVDOWN4BOX +#define HAS_SCALEUVDOWN4BOX 1 +#endif +#ifndef HAS_SCALEUVDOWNEVEN +#define HAS_SCALEUVDOWNEVEN 1 +#endif +#ifndef HAS_SCALEUVBILINEARDOWN +#define HAS_SCALEUVBILINEARDOWN 1 +#endif +#ifndef HAS_SCALEUVBILINEARUP +#define HAS_SCALEUVBILINEARUP 1 +#endif +#ifndef HAS_UVCOPY +#define HAS_UVCOPY 1 +#endif +#ifndef HAS_SCALEPLANEVERTICAL +#define HAS_SCALEPLANEVERTICAL 1 +#endif + +static __inline int Abs(int v) { + return v >= 0 ? v : -v; +} + +// ScaleUV, 1/2 +// This is an optimized version for scaling down a UV to 1/2 of +// its original size. +#if HAS_SCALEUVDOWN2 +static void ScaleUVDown2(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint8_t* src_uv, + uint8_t* dst_uv, + int x, + int dx, + int y, + int dy, + enum FilterMode filtering) { + int j; + int row_stride = src_stride * (dy >> 16); + void (*ScaleUVRowDown2)(const uint8_t* src_uv, ptrdiff_t src_stride, + uint8_t* dst_uv, int dst_width) = + filtering == kFilterNone + ? ScaleUVRowDown2_C + : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_C + : ScaleUVRowDown2Box_C); + (void)src_width; + (void)src_height; + (void)dx; + assert(dx == 65536 * 2); // Test scale factor of 2. + assert((dy & 0x1ffff) == 0); // Test vertical scale is multiple of 2. + // Advance to odd row, even column. + if (filtering == kFilterBilinear) { + src_uv += (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2; + } else { + src_uv += (y >> 16) * (intptr_t)src_stride + ((x >> 16) - 1) * 2; + } + +#if defined(HAS_SCALEUVROWDOWN2BOX_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && filtering) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_SSSE3; + if (IS_ALIGNED(dst_width, 4)) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_SSSE3; + } + } +#endif +#if defined(HAS_SCALEUVROWDOWN2BOX_AVX2) + if (TestCpuFlag(kCpuHasAVX2) && filtering) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_AVX2; + if (IS_ALIGNED(dst_width, 8)) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_AVX2; + } + } +#endif +#if defined(HAS_SCALEUVROWDOWN2BOX_NEON) + if (TestCpuFlag(kCpuHasNEON) && filtering) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_NEON; + } + } +#endif +#if defined(HAS_SCALEUVROWDOWN2_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleUVRowDown2 = + filtering == kFilterNone + ? ScaleUVRowDown2_Any_NEON + : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_Any_NEON + : ScaleUVRowDown2Box_Any_NEON); + if (IS_ALIGNED(dst_width, 8)) { + ScaleUVRowDown2 = + filtering == kFilterNone + ? ScaleUVRowDown2_NEON + : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_NEON + : ScaleUVRowDown2Box_NEON); + } + } +#endif + +// This code is not enabled. Only box filter is available at this time. +#if defined(HAS_SCALEUVROWDOWN2_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ScaleUVRowDown2 = + filtering == kFilterNone + ? ScaleUVRowDown2_Any_SSSE3 + : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_Any_SSSE3 + : ScaleUVRowDown2Box_Any_SSSE3); + if (IS_ALIGNED(dst_width, 2)) { + ScaleUVRowDown2 = + filtering == kFilterNone + ? ScaleUVRowDown2_SSSE3 + : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_SSSE3 + : ScaleUVRowDown2Box_SSSE3); + } + } +#endif + +#if defined(HAS_SCALEUVROWDOWN2_MSA) + if (TestCpuFlag(kCpuHasMSA)) { + ScaleUVRowDown2 = + filtering == kFilterNone + ? ScaleUVRowDown2_Any_MSA + : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_Any_MSA + : ScaleUVRowDown2Box_Any_MSA); + if (IS_ALIGNED(dst_width, 2)) { + ScaleUVRowDown2 = + filtering == kFilterNone + ? ScaleUVRowDown2_MSA + : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_MSA + : ScaleUVRowDown2Box_MSA); + } + } +#endif + + if (filtering == kFilterLinear) { + src_stride = 0; + } + for (j = 0; j < dst_height; ++j) { + ScaleUVRowDown2(src_uv, src_stride, dst_uv, dst_width); + src_uv += row_stride; + dst_uv += dst_stride; + } +} +#endif // HAS_SCALEUVDOWN2 + +// ScaleUV, 1/4 +// This is an optimized version for scaling down a UV to 1/4 of +// its original size. +#if HAS_SCALEUVDOWN4BOX +static void ScaleUVDown4Box(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint8_t* src_uv, + uint8_t* dst_uv, + int x, + int dx, + int y, + int dy) { + int j; + // Allocate 2 rows of UV. + const int row_size = (dst_width * 2 * 2 + 15) & ~15; + align_buffer_64(row, row_size * 2); + int row_stride = src_stride * (dy >> 16); + void (*ScaleUVRowDown2)(const uint8_t* src_uv, ptrdiff_t src_stride, + uint8_t* dst_uv, int dst_width) = + ScaleUVRowDown2Box_C; + // Advance to odd row, even column. + src_uv += (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2; + (void)src_width; + (void)src_height; + (void)dx; + assert(dx == 65536 * 4); // Test scale factor of 4. + assert((dy & 0x3ffff) == 0); // Test vertical scale is multiple of 4. + +#if defined(HAS_SCALEUVROWDOWN2BOX_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_SSSE3; + if (IS_ALIGNED(dst_width, 4)) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_SSSE3; + } + } +#endif +#if defined(HAS_SCALEUVROWDOWN2BOX_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_AVX2; + if (IS_ALIGNED(dst_width, 8)) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_AVX2; + } + } +#endif +#if defined(HAS_SCALEUVROWDOWN2BOX_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleUVRowDown2 = ScaleUVRowDown2Box_NEON; + } + } +#endif + + for (j = 0; j < dst_height; ++j) { + ScaleUVRowDown2(src_uv, src_stride, row, dst_width * 2); + ScaleUVRowDown2(src_uv + src_stride * 2, src_stride, row + row_size, + dst_width * 2); + ScaleUVRowDown2(row, row_size, dst_uv, dst_width); + src_uv += row_stride; + dst_uv += dst_stride; + } + free_aligned_buffer_64(row); +} +#endif // HAS_SCALEUVDOWN4BOX + +// ScaleUV Even +// This is an optimized version for scaling down a UV to even +// multiple of its original size. +#if HAS_SCALEUVDOWNEVEN +static void ScaleUVDownEven(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint8_t* src_uv, + uint8_t* dst_uv, + int x, + int dx, + int y, + int dy, + enum FilterMode filtering) { + int j; + int col_step = dx >> 16; + ptrdiff_t row_stride = (ptrdiff_t)((dy >> 16) * (intptr_t)src_stride); + void (*ScaleUVRowDownEven)(const uint8_t* src_uv, ptrdiff_t src_stride, + int src_step, uint8_t* dst_uv, int dst_width) = + filtering ? ScaleUVRowDownEvenBox_C : ScaleUVRowDownEven_C; + (void)src_width; + (void)src_height; + assert(IS_ALIGNED(src_width, 2)); + assert(IS_ALIGNED(src_height, 2)); + src_uv += (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2; +#if defined(HAS_SCALEUVROWDOWNEVEN_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ScaleUVRowDownEven = filtering ? ScaleUVRowDownEvenBox_Any_SSSE3 + : ScaleUVRowDownEven_Any_SSSE3; + if (IS_ALIGNED(dst_width, 4)) { + ScaleUVRowDownEven = + filtering ? ScaleUVRowDownEvenBox_SSE2 : ScaleUVRowDownEven_SSSE3; + } + } +#endif +#if defined(HAS_SCALEUVROWDOWNEVEN_NEON) + if (TestCpuFlag(kCpuHasNEON) && !filtering) { + ScaleUVRowDownEven = ScaleUVRowDownEven_Any_NEON; + if (IS_ALIGNED(dst_width, 4)) { + ScaleUVRowDownEven = ScaleUVRowDownEven_NEON; + } + } +#endif // TODO(fbarchard): Enable Box filter +#if defined(HAS_SCALEUVROWDOWNEVENBOX_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleUVRowDownEven = filtering ? ScaleUVRowDownEvenBox_Any_NEON + : ScaleUVRowDownEven_Any_NEON; + if (IS_ALIGNED(dst_width, 4)) { + ScaleUVRowDownEven = + filtering ? ScaleUVRowDownEvenBox_NEON : ScaleUVRowDownEven_NEON; + } + } +#endif +#if defined(HAS_SCALEUVROWDOWNEVEN_MSA) + if (TestCpuFlag(kCpuHasMSA)) { + ScaleUVRowDownEven = + filtering ? ScaleUVRowDownEvenBox_Any_MSA : ScaleUVRowDownEven_Any_MSA; + if (IS_ALIGNED(dst_width, 4)) { + ScaleUVRowDownEven = + filtering ? ScaleUVRowDownEvenBox_MSA : ScaleUVRowDownEven_MSA; + } + } +#endif + + if (filtering == kFilterLinear) { + src_stride = 0; + } + for (j = 0; j < dst_height; ++j) { + ScaleUVRowDownEven(src_uv, src_stride, col_step, dst_uv, dst_width); + src_uv += row_stride; + dst_uv += dst_stride; + } +} +#endif + +// Scale UV down with bilinear interpolation. +#if HAS_SCALEUVBILINEARDOWN +static void ScaleUVBilinearDown(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint8_t* src_uv, + uint8_t* dst_uv, + int x, + int dx, + int y, + int dy, + enum FilterMode filtering) { + int j; + void (*InterpolateRow)(uint8_t* dst_uv, const uint8_t* src_uv, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) = InterpolateRow_C; + void (*ScaleUVFilterCols)(uint8_t* dst_uv, const uint8_t* src_uv, + int dst_width, int x, int dx) = + (src_width >= 32768) ? ScaleUVFilterCols64_C : ScaleUVFilterCols_C; + int64_t xlast = x + (int64_t)(dst_width - 1) * dx; + int64_t xl = (dx >= 0) ? x : xlast; + int64_t xr = (dx >= 0) ? xlast : x; + int clip_src_width; + xl = (xl >> 16) & ~3; // Left edge aligned. + xr = (xr >> 16) + 1; // Right most pixel used. Bilinear uses 2 pixels. + xr = (xr + 1 + 3) & ~3; // 1 beyond 4 pixel aligned right most pixel. + if (xr > src_width) { + xr = src_width; + } + clip_src_width = (int)(xr - xl) * 2; // Width aligned to 2. + src_uv += xl * 2; + x -= (int)(xl << 16); +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(clip_src_width, 16)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(clip_src_width, 32)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(clip_src_width, 16)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_MSA) + if (TestCpuFlag(kCpuHasMSA)) { + InterpolateRow = InterpolateRow_Any_MSA; + if (IS_ALIGNED(clip_src_width, 32)) { + InterpolateRow = InterpolateRow_MSA; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_LSX) + if (TestCpuFlag(kCpuHasLSX)) { + InterpolateRow = InterpolateRow_Any_LSX; + if (IS_ALIGNED(clip_src_width, 32)) { + InterpolateRow = InterpolateRow_LSX; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_RVV) + if (TestCpuFlag(kCpuHasRVV)) { + InterpolateRow = InterpolateRow_RVV; + } +#endif +#if defined(HAS_SCALEUVFILTERCOLS_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleUVFilterCols = ScaleUVFilterCols_SSSE3; + } +#endif +#if defined(HAS_SCALEUVFILTERCOLS_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleUVFilterCols = ScaleUVFilterCols_Any_NEON; + if (IS_ALIGNED(dst_width, 4)) { + ScaleUVFilterCols = ScaleUVFilterCols_NEON; + } + } +#endif +#if defined(HAS_SCALEUVFILTERCOLS_MSA) + if (TestCpuFlag(kCpuHasMSA)) { + ScaleUVFilterCols = ScaleUVFilterCols_Any_MSA; + if (IS_ALIGNED(dst_width, 8)) { + ScaleUVFilterCols = ScaleUVFilterCols_MSA; + } + } +#endif + // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. + // Allocate a row of UV. + { + align_buffer_64(row, clip_src_width * 2); + + const int max_y = (src_height - 1) << 16; + if (y > max_y) { + y = max_y; + } + for (j = 0; j < dst_height; ++j) { + int yi = y >> 16; + const uint8_t* src = src_uv + yi * (intptr_t)src_stride; + if (filtering == kFilterLinear) { + ScaleUVFilterCols(dst_uv, src, dst_width, x, dx); + } else { + int yf = (y >> 8) & 255; + InterpolateRow(row, src, src_stride, clip_src_width, yf); + ScaleUVFilterCols(dst_uv, row, dst_width, x, dx); + } + dst_uv += dst_stride; + y += dy; + if (y > max_y) { + y = max_y; + } + } + free_aligned_buffer_64(row); + } +} +#endif + +// Scale UV up with bilinear interpolation. +#if HAS_SCALEUVBILINEARUP +static void ScaleUVBilinearUp(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint8_t* src_uv, + uint8_t* dst_uv, + int x, + int dx, + int y, + int dy, + enum FilterMode filtering) { + int j; + void (*InterpolateRow)(uint8_t* dst_uv, const uint8_t* src_uv, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) = InterpolateRow_C; + void (*ScaleUVFilterCols)(uint8_t* dst_uv, const uint8_t* src_uv, + int dst_width, int x, int dx) = + filtering ? ScaleUVFilterCols_C : ScaleUVCols_C; + const int max_y = (src_height - 1) << 16; +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(dst_width, 8)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(dst_width, 16)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_MSA) + if (TestCpuFlag(kCpuHasMSA)) { + InterpolateRow = InterpolateRow_Any_MSA; + if (IS_ALIGNED(dst_width, 16)) { + InterpolateRow = InterpolateRow_MSA; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_LSX) + if (TestCpuFlag(kCpuHasLSX)) { + InterpolateRow = InterpolateRow_Any_LSX; + if (IS_ALIGNED(dst_width, 16)) { + InterpolateRow = InterpolateRow_LSX; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_RVV) + if (TestCpuFlag(kCpuHasRVV)) { + InterpolateRow = InterpolateRow_RVV; + } +#endif + if (src_width >= 32768) { + ScaleUVFilterCols = filtering ? ScaleUVFilterCols64_C : ScaleUVCols64_C; + } +#if defined(HAS_SCALEUVFILTERCOLS_SSSE3) + if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleUVFilterCols = ScaleUVFilterCols_SSSE3; + } +#endif +#if defined(HAS_SCALEUVFILTERCOLS_NEON) + if (filtering && TestCpuFlag(kCpuHasNEON)) { + ScaleUVFilterCols = ScaleUVFilterCols_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleUVFilterCols = ScaleUVFilterCols_NEON; + } + } +#endif +#if defined(HAS_SCALEUVFILTERCOLS_MSA) + if (filtering && TestCpuFlag(kCpuHasMSA)) { + ScaleUVFilterCols = ScaleUVFilterCols_Any_MSA; + if (IS_ALIGNED(dst_width, 16)) { + ScaleUVFilterCols = ScaleUVFilterCols_MSA; + } + } +#endif +#if defined(HAS_SCALEUVCOLS_SSSE3) + if (!filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleUVFilterCols = ScaleUVCols_SSSE3; + } +#endif +#if defined(HAS_SCALEUVCOLS_NEON) + if (!filtering && TestCpuFlag(kCpuHasNEON)) { + ScaleUVFilterCols = ScaleUVCols_Any_NEON; + if (IS_ALIGNED(dst_width, 16)) { + ScaleUVFilterCols = ScaleUVCols_NEON; + } + } +#endif +#if defined(HAS_SCALEUVCOLS_MSA) + if (!filtering && TestCpuFlag(kCpuHasMSA)) { + ScaleUVFilterCols = ScaleUVCols_Any_MSA; + if (IS_ALIGNED(dst_width, 8)) { + ScaleUVFilterCols = ScaleUVCols_MSA; + } + } +#endif + if (!filtering && src_width * 2 == dst_width && x < 0x8000) { + ScaleUVFilterCols = ScaleUVColsUp2_C; +#if defined(HAS_SCALEUVCOLSUP2_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(dst_width, 8)) { + ScaleUVFilterCols = ScaleUVColsUp2_SSSE3; + } +#endif + } + + if (y > max_y) { + y = max_y; + } + + { + int yi = y >> 16; + const uint8_t* src = src_uv + yi * (intptr_t)src_stride; + + // Allocate 2 rows of UV. + const int row_size = (dst_width * 2 + 15) & ~15; + align_buffer_64(row, row_size * 2); + + uint8_t* rowptr = row; + int rowstride = row_size; + int lasty = yi; + + ScaleUVFilterCols(rowptr, src, dst_width, x, dx); + if (src_height > 1) { + src += src_stride; + } + ScaleUVFilterCols(rowptr + rowstride, src, dst_width, x, dx); + if (src_height > 2) { + src += src_stride; + } + + for (j = 0; j < dst_height; ++j) { + yi = y >> 16; + if (yi != lasty) { + if (y > max_y) { + y = max_y; + yi = y >> 16; + src = src_uv + yi * (intptr_t)src_stride; + } + if (yi != lasty) { + ScaleUVFilterCols(rowptr, src, dst_width, x, dx); + rowptr += rowstride; + rowstride = -rowstride; + lasty = yi; + if ((y + 65536) < max_y) { + src += src_stride; + } + } + } + if (filtering == kFilterLinear) { + InterpolateRow(dst_uv, rowptr, 0, dst_width * 2, 0); + } else { + int yf = (y >> 8) & 255; + InterpolateRow(dst_uv, rowptr, rowstride, dst_width * 2, yf); + } + dst_uv += dst_stride; + y += dy; + } + free_aligned_buffer_64(row); + } +} +#endif // HAS_SCALEUVBILINEARUP + +// Scale UV, horizontally up by 2 times. +// Uses linear filter horizontally, nearest vertically. +// This is an optimized version for scaling up a plane to 2 times of +// its original width, using linear interpolation. +// This is used to scale U and V planes of NV16 to NV24. +void ScaleUVLinearUp2(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint8_t* src_uv, + uint8_t* dst_uv) { + void (*ScaleRowUp)(const uint8_t* src_uv, uint8_t* dst_uv, int dst_width) = + ScaleUVRowUp2_Linear_Any_C; + int i; + int y; + int dy; + + // This function can only scale up by 2 times horizontally. + assert(src_width == ((dst_width + 1) / 2)); + +#ifdef HAS_SCALEUVROWUP2_LINEAR_SSSE3 + if (TestCpuFlag(kCpuHasSSSE3)) { + ScaleRowUp = ScaleUVRowUp2_Linear_Any_SSSE3; + } +#endif + +#ifdef HAS_SCALEUVROWUP2_LINEAR_AVX2 + if (TestCpuFlag(kCpuHasAVX2)) { + ScaleRowUp = ScaleUVRowUp2_Linear_Any_AVX2; + } +#endif + +#ifdef HAS_SCALEUVROWUP2_LINEAR_NEON + if (TestCpuFlag(kCpuHasNEON)) { + ScaleRowUp = ScaleUVRowUp2_Linear_Any_NEON; + } +#endif + + if (dst_height == 1) { + ScaleRowUp(src_uv + ((src_height - 1) / 2) * (intptr_t)src_stride, dst_uv, + dst_width); + } else { + dy = FixedDiv(src_height - 1, dst_height - 1); + y = (1 << 15) - 1; + for (i = 0; i < dst_height; ++i) { + ScaleRowUp(src_uv + (y >> 16) * (intptr_t)src_stride, dst_uv, dst_width); + dst_uv += dst_stride; + y += dy; + } + } +} + +// Scale plane, up by 2 times. +// This is an optimized version for scaling up a plane to 2 times of +// its original size, using bilinear interpolation. +// This is used to scale U and V planes of NV12 to NV24. +void ScaleUVBilinearUp2(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint8_t* src_ptr, + uint8_t* dst_ptr) { + void (*Scale2RowUp)(const uint8_t* src_ptr, ptrdiff_t src_stride, + uint8_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) = + ScaleUVRowUp2_Bilinear_Any_C; + int x; + + // This function can only scale up by 2 times. + assert(src_width == ((dst_width + 1) / 2)); + assert(src_height == ((dst_height + 1) / 2)); + +#ifdef HAS_SCALEUVROWUP2_BILINEAR_SSSE3 + if (TestCpuFlag(kCpuHasSSSE3)) { + Scale2RowUp = ScaleUVRowUp2_Bilinear_Any_SSSE3; + } +#endif + +#ifdef HAS_SCALEUVROWUP2_BILINEAR_AVX2 + if (TestCpuFlag(kCpuHasAVX2)) { + Scale2RowUp = ScaleUVRowUp2_Bilinear_Any_AVX2; + } +#endif + +#ifdef HAS_SCALEUVROWUP2_BILINEAR_NEON + if (TestCpuFlag(kCpuHasNEON)) { + Scale2RowUp = ScaleUVRowUp2_Bilinear_Any_NEON; + } +#endif + + Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); + dst_ptr += dst_stride; + for (x = 0; x < src_height - 1; ++x) { + Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width); + src_ptr += src_stride; + // TODO(fbarchard): Test performance of writing one row of destination at a + // time. + dst_ptr += 2 * dst_stride; + } + if (!(dst_height & 1)) { + Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); + } +} + +// Scale 16 bit UV, horizontally up by 2 times. +// Uses linear filter horizontally, nearest vertically. +// This is an optimized version for scaling up a plane to 2 times of +// its original width, using linear interpolation. +// This is used to scale U and V planes of P210 to P410. +void ScaleUVLinearUp2_16(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint16_t* src_uv, + uint16_t* dst_uv) { + void (*ScaleRowUp)(const uint16_t* src_uv, uint16_t* dst_uv, int dst_width) = + ScaleUVRowUp2_Linear_16_Any_C; + int i; + int y; + int dy; + + // This function can only scale up by 2 times horizontally. + assert(src_width == ((dst_width + 1) / 2)); + +#ifdef HAS_SCALEUVROWUP2_LINEAR_16_SSE41 + if (TestCpuFlag(kCpuHasSSE41)) { + ScaleRowUp = ScaleUVRowUp2_Linear_16_Any_SSE41; + } +#endif + +#ifdef HAS_SCALEUVROWUP2_LINEAR_16_AVX2 + if (TestCpuFlag(kCpuHasAVX2)) { + ScaleRowUp = ScaleUVRowUp2_Linear_16_Any_AVX2; + } +#endif + +#ifdef HAS_SCALEUVROWUP2_LINEAR_16_NEON + if (TestCpuFlag(kCpuHasNEON)) { + ScaleRowUp = ScaleUVRowUp2_Linear_16_Any_NEON; + } +#endif + + if (dst_height == 1) { + ScaleRowUp(src_uv + ((src_height - 1) / 2) * (intptr_t)src_stride, dst_uv, + dst_width); + } else { + dy = FixedDiv(src_height - 1, dst_height - 1); + y = (1 << 15) - 1; + for (i = 0; i < dst_height; ++i) { + ScaleRowUp(src_uv + (y >> 16) * (intptr_t)src_stride, dst_uv, dst_width); + dst_uv += dst_stride; + y += dy; + } + } +} + +// Scale 16 bit UV, up by 2 times. +// This is an optimized version for scaling up a plane to 2 times of +// its original size, using bilinear interpolation. +// This is used to scale U and V planes of P010 to P410. +void ScaleUVBilinearUp2_16(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint16_t* src_ptr, + uint16_t* dst_ptr) { + void (*Scale2RowUp)(const uint16_t* src_ptr, ptrdiff_t src_stride, + uint16_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) = + ScaleUVRowUp2_Bilinear_16_Any_C; + int x; + + // This function can only scale up by 2 times. + assert(src_width == ((dst_width + 1) / 2)); + assert(src_height == ((dst_height + 1) / 2)); + +#ifdef HAS_SCALEUVROWUP2_BILINEAR_16_SSE41 + if (TestCpuFlag(kCpuHasSSE41)) { + Scale2RowUp = ScaleUVRowUp2_Bilinear_16_Any_SSE41; + } +#endif + +#ifdef HAS_SCALEUVROWUP2_BILINEAR_16_AVX2 + if (TestCpuFlag(kCpuHasAVX2)) { + Scale2RowUp = ScaleUVRowUp2_Bilinear_16_Any_AVX2; + } +#endif + +#ifdef HAS_SCALEUVROWUP2_BILINEAR_16_NEON + if (TestCpuFlag(kCpuHasNEON)) { + Scale2RowUp = ScaleUVRowUp2_Bilinear_16_Any_NEON; + } +#endif + + Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); + dst_ptr += dst_stride; + for (x = 0; x < src_height - 1; ++x) { + Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width); + src_ptr += src_stride; + // TODO(fbarchard): Test performance of writing one row of destination at a + // time. + dst_ptr += 2 * dst_stride; + } + if (!(dst_height & 1)) { + Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); + } +} + +// Scale UV to/from any dimensions, without interpolation. +// Fixed point math is used for performance: The upper 16 bits +// of x and dx is the integer part of the source position and +// the lower 16 bits are the fixed decimal part. + +static void ScaleUVSimple(int src_width, + int src_height, + int dst_width, + int dst_height, + int src_stride, + int dst_stride, + const uint8_t* src_uv, + uint8_t* dst_uv, + int x, + int dx, + int y, + int dy) { + int j; + void (*ScaleUVCols)(uint8_t* dst_uv, const uint8_t* src_uv, int dst_width, + int x, int dx) = + (src_width >= 32768) ? ScaleUVCols64_C : ScaleUVCols_C; + (void)src_height; +#if defined(HAS_SCALEUVCOLS_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleUVCols = ScaleUVCols_SSSE3; + } +#endif +#if defined(HAS_SCALEUVCOLS_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleUVCols = ScaleUVCols_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleUVCols = ScaleUVCols_NEON; + } + } +#endif +#if defined(HAS_SCALEUVCOLS_MSA) + if (TestCpuFlag(kCpuHasMSA)) { + ScaleUVCols = ScaleUVCols_Any_MSA; + if (IS_ALIGNED(dst_width, 4)) { + ScaleUVCols = ScaleUVCols_MSA; + } + } +#endif + if (src_width * 2 == dst_width && x < 0x8000) { + ScaleUVCols = ScaleUVColsUp2_C; +#if defined(HAS_SCALEUVCOLSUP2_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(dst_width, 8)) { + ScaleUVCols = ScaleUVColsUp2_SSSE3; + } +#endif + } + + for (j = 0; j < dst_height; ++j) { + ScaleUVCols(dst_uv, src_uv + (y >> 16) * (intptr_t)src_stride, dst_width, x, + dx); + dst_uv += dst_stride; + y += dy; + } +} + +// Copy UV with optional flipping +#if HAS_UVCOPY +static int UVCopy(const uint8_t* src_uv, + int src_stride_uv, + uint8_t* dst_uv, + int dst_stride_uv, + int width, + int height) { + if (!src_uv || !dst_uv || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_uv = src_uv + (height - 1) * (intptr_t)src_stride_uv; + src_stride_uv = -src_stride_uv; + } + + CopyPlane(src_uv, src_stride_uv, dst_uv, dst_stride_uv, width * 2, height); + return 0; +} + +static int UVCopy_16(const uint16_t* src_uv, + int src_stride_uv, + uint16_t* dst_uv, + int dst_stride_uv, + int width, + int height) { + if (!src_uv || !dst_uv || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_uv = src_uv + (height - 1) * (intptr_t)src_stride_uv; + src_stride_uv = -src_stride_uv; + } + + CopyPlane_16(src_uv, src_stride_uv, dst_uv, dst_stride_uv, width * 2, height); + return 0; +} +#endif // HAS_UVCOPY + +// Scale a UV plane (from NV12) +// This function in turn calls a scaling function +// suitable for handling the desired resolutions. +static void ScaleUV(const uint8_t* src, + int src_stride, + int src_width, + int src_height, + uint8_t* dst, + int dst_stride, + int dst_width, + int dst_height, + int clip_x, + int clip_y, + int clip_width, + int clip_height, + enum FilterMode filtering) { + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + // UV does not support box filter yet, but allow the user to pass it. + // Simplify filtering when possible. + filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height, + filtering); + + // Negative src_height means invert the image. + if (src_height < 0) { + src_height = -src_height; + src = src + (src_height - 1) * (intptr_t)src_stride; + src_stride = -src_stride; + } + ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, + &dx, &dy); + src_width = Abs(src_width); + if (clip_x) { + int64_t clipf = (int64_t)(clip_x)*dx; + x += (clipf & 0xffff); + src += (clipf >> 16) * 2; + dst += clip_x * 2; + } + if (clip_y) { + int64_t clipf = (int64_t)(clip_y)*dy; + y += (clipf & 0xffff); + src += (clipf >> 16) * (intptr_t)src_stride; + dst += clip_y * dst_stride; + } + + // Special case for integer step values. + if (((dx | dy) & 0xffff) == 0) { + if (!dx || !dy) { // 1 pixel wide and/or tall. + filtering = kFilterNone; + } else { + // Optimized even scale down. ie 2, 4, 6, 8, 10x. + if (!(dx & 0x10000) && !(dy & 0x10000)) { +#if HAS_SCALEUVDOWN2 + if (dx == 0x20000) { + // Optimized 1/2 downsample. + ScaleUVDown2(src_width, src_height, clip_width, clip_height, + src_stride, dst_stride, src, dst, x, dx, y, dy, + filtering); + return; + } +#endif +#if HAS_SCALEUVDOWN4BOX + if (dx == 0x40000 && filtering == kFilterBox) { + // Optimized 1/4 box downsample. + ScaleUVDown4Box(src_width, src_height, clip_width, clip_height, + src_stride, dst_stride, src, dst, x, dx, y, dy); + return; + } +#endif +#if HAS_SCALEUVDOWNEVEN + ScaleUVDownEven(src_width, src_height, clip_width, clip_height, + src_stride, dst_stride, src, dst, x, dx, y, dy, + filtering); + return; +#endif + } + // Optimized odd scale down. ie 3, 5, 7, 9x. + if ((dx & 0x10000) && (dy & 0x10000)) { + filtering = kFilterNone; +#ifdef HAS_UVCOPY + if (dx == 0x10000 && dy == 0x10000) { + // Straight copy. + UVCopy(src + (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2, + src_stride, dst, dst_stride, clip_width, clip_height); + return; + } +#endif + } + } + } + // HAS_SCALEPLANEVERTICAL + if (dx == 0x10000 && (x & 0xffff) == 0) { + // Arbitrary scale vertically, but unscaled horizontally. + ScalePlaneVertical(src_height, clip_width, clip_height, src_stride, + dst_stride, src, dst, x, y, dy, /*bpp=*/2, filtering); + return; + } + if ((filtering == kFilterLinear) && ((dst_width + 1) / 2 == src_width)) { + ScaleUVLinearUp2(src_width, src_height, clip_width, clip_height, src_stride, + dst_stride, src, dst); + return; + } + if ((clip_height + 1) / 2 == src_height && + (clip_width + 1) / 2 == src_width && + (filtering == kFilterBilinear || filtering == kFilterBox)) { + ScaleUVBilinearUp2(src_width, src_height, clip_width, clip_height, + src_stride, dst_stride, src, dst); + return; + } +#if HAS_SCALEUVBILINEARUP + if (filtering && dy < 65536) { + ScaleUVBilinearUp(src_width, src_height, clip_width, clip_height, + src_stride, dst_stride, src, dst, x, dx, y, dy, + filtering); + return; + } +#endif +#if HAS_SCALEUVBILINEARDOWN + if (filtering) { + ScaleUVBilinearDown(src_width, src_height, clip_width, clip_height, + src_stride, dst_stride, src, dst, x, dx, y, dy, + filtering); + return; + } +#endif + ScaleUVSimple(src_width, src_height, clip_width, clip_height, src_stride, + dst_stride, src, dst, x, dx, y, dy); +} + +// Scale an UV image. +LIBYUV_API +int UVScale(const uint8_t* src_uv, + int src_stride_uv, + int src_width, + int src_height, + uint8_t* dst_uv, + int dst_stride_uv, + int dst_width, + int dst_height, + enum FilterMode filtering) { + if (!src_uv || src_width <= 0 || src_height == 0 || src_width > 32768 || + src_height > 32768 || !dst_uv || dst_width <= 0 || dst_height <= 0) { + return -1; + } + ScaleUV(src_uv, src_stride_uv, src_width, src_height, dst_uv, dst_stride_uv, + dst_width, dst_height, 0, 0, dst_width, dst_height, filtering); + return 0; +} + +// Scale a 16 bit UV image. +// This function is currently incomplete, it can't handle all cases. +LIBYUV_API +int UVScale_16(const uint16_t* src_uv, + int src_stride_uv, + int src_width, + int src_height, + uint16_t* dst_uv, + int dst_stride_uv, + int dst_width, + int dst_height, + enum FilterMode filtering) { + int dy = 0; + + if (!src_uv || src_width <= 0 || src_height == 0 || src_width > 32768 || + src_height > 32768 || !dst_uv || dst_width <= 0 || dst_height <= 0) { + return -1; + } + + // UV does not support box filter yet, but allow the user to pass it. + // Simplify filtering when possible. + filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height, + filtering); + + // Negative src_height means invert the image. + if (src_height < 0) { + src_height = -src_height; + src_uv = src_uv + (src_height - 1) * (intptr_t)src_stride_uv; + src_stride_uv = -src_stride_uv; + } + src_width = Abs(src_width); + +#ifdef HAS_UVCOPY + if (!filtering && src_width == dst_width && (src_height % dst_height == 0)) { + if (dst_height == 1) { + UVCopy_16(src_uv + ((src_height - 1) / 2) * (intptr_t)src_stride_uv, + src_stride_uv, dst_uv, dst_stride_uv, dst_width, dst_height); + } else { + dy = src_height / dst_height; + UVCopy_16(src_uv + ((dy - 1) / 2) * (intptr_t)src_stride_uv, + (int)(dy * (intptr_t)src_stride_uv), dst_uv, dst_stride_uv, + dst_width, dst_height); + } + + return 0; + } +#endif + + if ((filtering == kFilterLinear) && ((dst_width + 1) / 2 == src_width)) { + ScaleUVLinearUp2_16(src_width, src_height, dst_width, dst_height, + src_stride_uv, dst_stride_uv, src_uv, dst_uv); + return 0; + } + + if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width && + (filtering == kFilterBilinear || filtering == kFilterBox)) { + ScaleUVBilinearUp2_16(src_width, src_height, dst_width, dst_height, + src_stride_uv, dst_stride_uv, src_uv, dst_uv); + return 0; + } + + return -1; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif -- cgit v1.2.3