aboutsummaryrefslogtreecommitdiff
path: root/src/analysis.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/analysis.c')
-rw-r--r--src/analysis.c351
1 files changed, 178 insertions, 173 deletions
diff --git a/src/analysis.c b/src/analysis.c
index f4160e4b..b192ae4e 100644
--- a/src/analysis.c
+++ b/src/analysis.c
@@ -50,6 +50,8 @@
#ifndef DISABLE_FLOAT_API
+#define TRANSITION_PENALTY 10
+
static const float dct_table[128] = {
0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
@@ -224,19 +226,23 @@ void tonality_analysis_reset(TonalityAnalysisState *tonal)
/* Clear non-reusable fields. */
char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START;
OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal));
- tonal->music_confidence = .9f;
- tonal->speech_confidence = .1f;
}
void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len)
{
int pos;
int curr_lookahead;
- float psum;
float tonality_max;
float tonality_avg;
int tonality_count;
int i;
+ int pos0;
+ float prob_avg;
+ float prob_count;
+ float prob_min, prob_max;
+ float vad_prob;
+ int mpos, vpos;
+ int bandwidth_span;
pos = tonal->read_pos;
curr_lookahead = tonal->write_pos-tonal->read_pos;
@@ -254,9 +260,12 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int
pos--;
if (pos<0)
pos = DETECT_SIZE-1;
+ pos0 = pos;
OPUS_COPY(info_out, &tonal->info[pos], 1);
tonality_max = tonality_avg = info_out->tonality;
tonality_count = 1;
+ /* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */
+ bandwidth_span = 6;
/* If possible, look ahead for a tone to compensate for the delay in the tone detector. */
for (i=0;i<3;i++)
{
@@ -268,8 +277,122 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int
tonality_max = MAX32(tonality_max, tonal->info[pos].tonality);
tonality_avg += tonal->info[pos].tonality;
tonality_count++;
+ info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
+ bandwidth_span--;
+ }
+ pos = pos0;
+ /* Look back in time to see if any has a wider bandwidth than the current frame. */
+ for (i=0;i<bandwidth_span;i++)
+ {
+ pos--;
+ if (pos < 0)
+ pos = DETECT_SIZE-1;
+ if (pos == tonal->write_pos)
+ break;
+ info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
}
info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f);
+
+ mpos = vpos = pos0;
+ /* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and
+ ~1 frame delay in the VAD prob. */
+ if (curr_lookahead > 15)
+ {
+ mpos += 5;
+ if (mpos>=DETECT_SIZE)
+ mpos -= DETECT_SIZE;
+ vpos += 1;
+ if (vpos>=DETECT_SIZE)
+ vpos -= DETECT_SIZE;
+ }
+
+ /* The following calculations attempt to minimize a "badness function"
+ for the transition. When switching from speech to music, the badness
+ of switching at frame k is
+ b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
+ where
+ v_i is the activity probability (VAD) at frame i,
+ p_i is the music probability at frame i
+ T is the probability threshold for switching
+ S is the penalty for switching during active audio rather than silence
+ the current frame has index i=0
+
+ Rather than apply badness to directly decide when to switch, what we compute
+ instead is the threshold for which the optimal switching point is now. When
+ considering whether to switch now (frame 0) or at frame k, we have:
+ S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
+ which gives us:
+ T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i )
+ We take the min threshold across all positive values of k (up to the maximum
+ amount of lookahead we have) to give us the threshold for which the current
+ frame is the optimal switch point.
+
+ The last step is that we need to consider whether we want to switch at all.
+ For that we use the average of the music probability over the entire window.
+ If the threshold is higher than that average we're not going to
+ switch, so we compute a min with the average as well. The result of all these
+ min operations is music_prob_min, which gives the threshold for switching to music
+ if we're currently encoding for speech.
+
+ We do the exact opposite to compute music_prob_max which is used for switching
+ from music to speech.
+ */
+ prob_min = 1.f;
+ prob_max = 0.f;
+ vad_prob = tonal->info[vpos].activity_probability;
+ prob_count = MAX16(.1f, vad_prob);
+ prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob;
+ while (1)
+ {
+ float pos_vad;
+ mpos++;
+ if (mpos==DETECT_SIZE)
+ mpos = 0;
+ if (mpos == tonal->write_pos)
+ break;
+ vpos++;
+ if (vpos==DETECT_SIZE)
+ vpos = 0;
+ if (vpos == tonal->write_pos)
+ break;
+ pos_vad = tonal->info[vpos].activity_probability;
+ prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min);
+ prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max);
+ prob_count += MAX16(.1f, pos_vad);
+ prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob;
+ }
+ info_out->music_prob = prob_avg/prob_count;
+ prob_min = MIN16(prob_avg/prob_count, prob_min);
+ prob_max = MAX16(prob_avg/prob_count, prob_max);
+ prob_min = MAX16(prob_min, 0.f);
+ prob_max = MIN16(prob_max, 1.f);
+
+ /* If we don't have enough look-ahead, do our best to make a decent decision. */
+ if (curr_lookahead < 10)
+ {
+ float pmin, pmax;
+ pmin = prob_min;
+ pmax = prob_max;
+ pos = pos0;
+ /* Look for min/max in the past. */
+ for (i=0;i<IMIN(tonal->count-1, 15);i++)
+ {
+ pos--;
+ if (pos < 0)
+ pos = DETECT_SIZE-1;
+ pmin = MIN16(pmin, tonal->info[pos].music_prob);
+ pmax = MAX16(pmax, tonal->info[pos].music_prob);
+ }
+ /* Bias against switching on active audio. */
+ pmin = MAX16(0.f, pmin - .1f*vad_prob);
+ pmax = MIN16(1.f, pmax + .1f*vad_prob);
+ prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min);
+ prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max);
+ }
+ info_out->music_prob_min = prob_min;
+ info_out->music_prob_max = prob_max;
+
+ /* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */
tonal->read_subframe += len/(tonal->Fs/400);
while (tonal->read_subframe>=8)
{
@@ -278,21 +401,6 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int
}
if (tonal->read_pos>=DETECT_SIZE)
tonal->read_pos-=DETECT_SIZE;
-
- /* The -1 is to compensate for the delay in the features themselves. */
- curr_lookahead = IMAX(curr_lookahead-1, 0);
-
- psum=0;
- /* Summing the probability of transition patterns that involve music at
- time (DETECT_SIZE-curr_lookahead-1) */
- for (i=0;i<DETECT_SIZE-curr_lookahead;i++)
- psum += tonal->pmusic[i];
- for (;i<DETECT_SIZE;i++)
- psum += tonal->pspeech[i];
- psum = psum*tonal->music_confidence + (1-psum)*tonal->speech_confidence;
- /*printf("%f %f %f %f %f\n", psum, info_out->music_prob, info_out->vad_prob, info_out->activity_probability, info_out->tonality);*/
-
- info_out->music_prob = psum;
}
static const float std_feature_bias[9] = {
@@ -340,6 +448,7 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
float alpha, alphaE, alphaE2;
float frame_loudness;
float bandwidth_mask;
+ int is_masked[NB_TBANDS+1];
int bandwidth=0;
float maxE = 0;
float noise_floor;
@@ -352,11 +461,16 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
float band_log2[NB_TBANDS+1];
float leakage_from[NB_TBANDS+1];
float leakage_to[NB_TBANDS+1];
+ float layer_out[MAX_NEURONS];
+ float below_max_pitch;
+ float above_max_pitch;
SAVE_STACK;
alpha = 1.f/IMIN(10, 1+tonal->count);
alphaE = 1.f/IMIN(25, 1+tonal->count);
- alphaE2 = 1.f/IMIN(500, 1+tonal->count);
+ /* Noise floor related decay for bandwidth detection: -2.2 dB/second */
+ alphaE2 = 1.f/IMIN(100, 1+tonal->count);
+ if (tonal->count <= 1) alphaE2 = 1;
if (tonal->Fs == 48000)
{
@@ -368,12 +482,6 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
offset = 3*offset/2;
}
- if (tonal->count<4) {
- if (tonal->application == OPUS_APPLICATION_VOIP)
- tonal->music_prob = .1f;
- else
- tonal->music_prob = .625f;
- }
kfft = celt_mode->mdct.kfft[0];
if (tonal->count==0)
tonal->mem_fill = 240;
@@ -632,9 +740,12 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
maxE = 0;
noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8)));
noise_floor *= noise_floor;
+ below_max_pitch=0;
+ above_max_pitch=0;
for (b=0;b<NB_TBANDS;b++)
{
float E=0;
+ float Em;
int band_start, band_end;
/* Keep a margin of 300 Hz for aliasing */
band_start = tbands[b];
@@ -647,41 +758,59 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
}
E = SCALE_ENER(E);
maxE = MAX32(maxE, E);
+ if (band_start < 64)
+ {
+ below_max_pitch += E;
+ } else {
+ above_max_pitch += E;
+ }
tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
- E = MAX32(E, tonal->meanE[b]);
- /* Use a simple follower with 13 dB/Bark slope for spreading function */
- bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
+ Em = MAX32(E, tonal->meanE[b]);
/* Consider the band "active" only if all these conditions are met:
- 1) less than 10 dB below the simple follower
- 2) less than 90 dB below the peak band (maximal masking possible considering
+ 1) less than 90 dB below the peak band (maximal masking possible considering
both the ATH and the loudness-dependent slope of the spreading function)
- 3) above the PCM quantization noise floor
+ 2) above the PCM quantization noise floor
We use b+1 because the first CELT band isn't included in tbands[]
*/
- if (E>.1*bandwidth_mask && E*1e9f > maxE && E > noise_floor*(band_end-band_start))
+ if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start)))
bandwidth = b+1;
+ /* Check if the band is masked (see below). */
+ is_masked[b] = E < (tonal->prev_bandwidth >= b+1 ? .01f : .05f)*bandwidth_mask;
+ /* Use a simple follower with 13 dB/Bark slope for spreading function. */
+ bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
}
/* Special case for the last two bands, for which we don't have spectrum but only
- the energy above 12 kHz. */
+ the energy above 12 kHz. The difficulty here is that the high-pass we use
+ leaks some LF energy, so we need to increase the threshold without accidentally cutting
+ off the band. */
if (tonal->Fs == 48000) {
- float ratio;
- float E = hp_ener*(1.f/(240*240));
- ratio = tonal->prev_bandwidth==20 ? 0.03f : 0.07f;
+ float noise_ratio;
+ float Em;
+ float E = hp_ener*(1.f/(60*60));
+ noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f;
+
#ifdef FIXED_POINT
/* silk_resampler_down2_hp() shifted right by an extra 8 bits. */
E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE);
#endif
- maxE = MAX32(maxE, E);
+ above_max_pitch += E;
tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
- E = MAX32(E, tonal->meanE[b]);
- /* Use a simple follower with 13 dB/Bark slope for spreading function */
- bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
- if (E>ratio*bandwidth_mask && E*1e9f > maxE && E > noise_floor*160)
- bandwidth = 20;
- /* This detector is unreliable, so if the bandwidth is close to SWB, assume it's FB. */
- if (bandwidth >= 17)
+ Em = MAX32(E, tonal->meanE[b]);
+ if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160)
bandwidth = 20;
+ /* Check if the band is masked (see below). */
+ is_masked[b] = E < (tonal->prev_bandwidth == 20 ? .01f : .05f)*bandwidth_mask;
}
+ if (above_max_pitch > below_max_pitch)
+ info->max_pitch_ratio = below_max_pitch/above_max_pitch;
+ else
+ info->max_pitch_ratio = 1;
+ /* In some cases, resampling aliasing can create a small amount of energy in the first band
+ being cut. So if the last band is masked, we don't include it. */
+ if (bandwidth == 20 && is_masked[NB_TBANDS])
+ bandwidth-=2;
+ else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1])
+ bandwidth--;
if (tonal->count<=2)
bandwidth = 20;
frame_loudness = 20*(float)log10(frame_loudness);
@@ -761,139 +890,15 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
features[23] = info->tonality_slope + 0.069216f;
features[24] = tonal->lowECount - 0.067930f;
- mlp_process(&net, features, frame_probs);
- frame_probs[0] = .5f*(frame_probs[0]+1);
- /* Curve fitting between the MLP probability and the actual probability */
- /*frame_probs[0] = .01f + 1.21f*frame_probs[0]*frame_probs[0] - .23f*(float)pow(frame_probs[0], 10);*/
- /* Probability of active audio (as opposed to silence) */
- frame_probs[1] = .5f*frame_probs[1]+.5f;
- frame_probs[1] *= frame_probs[1];
+ compute_dense(&layer0, layer_out, features);
+ compute_gru(&layer1, tonal->rnn_state, layer_out);
+ compute_dense(&layer2, frame_probs, tonal->rnn_state);
/* Probability of speech or music vs noise */
info->activity_probability = frame_probs[1];
+ info->music_prob = frame_probs[0];
- /*printf("%f %f\n", frame_probs[0], frame_probs[1]);*/
- {
- /* Probability of state transition */
- float tau;
- /* Represents independence of the MLP probabilities, where
- beta=1 means fully independent. */
- float beta;
- /* Denormalized probability of speech (p0) and music (p1) after update */
- float p0, p1;
- /* Probabilities for "all speech" and "all music" */
- float s0, m0;
- /* Probability sum for renormalisation */
- float psum;
- /* Instantaneous probability of speech and music, with beta pre-applied. */
- float speech0;
- float music0;
- float p, q;
-
- /* More silence transitions for speech than for music. */
- tau = .001f*tonal->music_prob + .01f*(1-tonal->music_prob);
- p = MAX16(.05f,MIN16(.95f,frame_probs[1]));
- q = MAX16(.05f,MIN16(.95f,tonal->vad_prob));
- beta = .02f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p));
- /* p0 and p1 are the probabilities of speech and music at this frame
- using only information from previous frame and applying the
- state transition model */
- p0 = (1-tonal->vad_prob)*(1-tau) + tonal->vad_prob *tau;
- p1 = tonal->vad_prob *(1-tau) + (1-tonal->vad_prob)*tau;
- /* We apply the current probability with exponent beta to work around
- the fact that the probability estimates aren't independent. */
- p0 *= (float)pow(1-frame_probs[1], beta);
- p1 *= (float)pow(frame_probs[1], beta);
- /* Normalise the probabilities to get the Marokv probability of music. */
- tonal->vad_prob = p1/(p0+p1);
- info->vad_prob = tonal->vad_prob;
- /* Consider that silence has a 50-50 probability of being speech or music. */
- frame_probs[0] = tonal->vad_prob*frame_probs[0] + (1-tonal->vad_prob)*.5f;
-
- /* One transition every 3 minutes of active audio */
- tau = .0001f;
- /* Adapt beta based on how "unexpected" the new prob is */
- p = MAX16(.05f,MIN16(.95f,frame_probs[0]));
- q = MAX16(.05f,MIN16(.95f,tonal->music_prob));
- beta = .02f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p));
- /* p0 and p1 are the probabilities of speech and music at this frame
- using only information from previous frame and applying the
- state transition model */
- p0 = (1-tonal->music_prob)*(1-tau) + tonal->music_prob *tau;
- p1 = tonal->music_prob *(1-tau) + (1-tonal->music_prob)*tau;
- /* We apply the current probability with exponent beta to work around
- the fact that the probability estimates aren't independent. */
- p0 *= (float)pow(1-frame_probs[0], beta);
- p1 *= (float)pow(frame_probs[0], beta);
- /* Normalise the probabilities to get the Marokv probability of music. */
- tonal->music_prob = p1/(p0+p1);
- info->music_prob = tonal->music_prob;
-
- /*printf("%f %f %f %f\n", frame_probs[0], frame_probs[1], tonal->music_prob, tonal->vad_prob);*/
- /* This chunk of code deals with delayed decision. */
- psum=1e-20f;
- /* Instantaneous probability of speech and music, with beta pre-applied. */
- speech0 = (float)pow(1-frame_probs[0], beta);
- music0 = (float)pow(frame_probs[0], beta);
- if (tonal->count==1)
- {
- if (tonal->application == OPUS_APPLICATION_VOIP)
- tonal->pmusic[0] = .1f;
- else
- tonal->pmusic[0] = .625f;
- tonal->pspeech[0] = 1-tonal->pmusic[0];
- }
- /* Updated probability of having only speech (s0) or only music (m0),
- before considering the new observation. */
- s0 = tonal->pspeech[0] + tonal->pspeech[1];
- m0 = tonal->pmusic [0] + tonal->pmusic [1];
- /* Updates s0 and m0 with instantaneous probability. */
- tonal->pspeech[0] = s0*(1-tau)*speech0;
- tonal->pmusic [0] = m0*(1-tau)*music0;
- /* Propagate the transition probabilities */
- for (i=1;i<DETECT_SIZE-1;i++)
- {
- tonal->pspeech[i] = tonal->pspeech[i+1]*speech0;
- tonal->pmusic [i] = tonal->pmusic [i+1]*music0;
- }
- /* Probability that the latest frame is speech, when all the previous ones were music. */
- tonal->pspeech[DETECT_SIZE-1] = m0*tau*speech0;
- /* Probability that the latest frame is music, when all the previous ones were speech. */
- tonal->pmusic [DETECT_SIZE-1] = s0*tau*music0;
-
- /* Renormalise probabilities to 1 */
- for (i=0;i<DETECT_SIZE;i++)
- psum += tonal->pspeech[i] + tonal->pmusic[i];
- psum = 1.f/psum;
- for (i=0;i<DETECT_SIZE;i++)
- {
- tonal->pspeech[i] *= psum;
- tonal->pmusic [i] *= psum;
- }
- psum = tonal->pmusic[0];
- for (i=1;i<DETECT_SIZE;i++)
- psum += tonal->pspeech[i];
-
- /* Estimate our confidence in the speech/music decisions */
- if (frame_probs[1]>.75)
- {
- if (tonal->music_prob>.9)
- {
- float adapt;
- adapt = 1.f/(++tonal->music_confidence_count);
- tonal->music_confidence_count = IMIN(tonal->music_confidence_count, 500);
- tonal->music_confidence += adapt*MAX16(-.2f,frame_probs[0]-tonal->music_confidence);
- }
- if (tonal->music_prob<.1)
- {
- float adapt;
- adapt = 1.f/(++tonal->speech_confidence_count);
- tonal->speech_confidence_count = IMIN(tonal->speech_confidence_count, 500);
- tonal->speech_confidence += adapt*MIN16(.2f,frame_probs[0]-tonal->speech_confidence);
- }
- }
- }
- tonal->last_music = tonal->music_prob>.5f;
+ /*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/
#ifdef MLP_TRAINING
for (i=0;i<25;i++)
printf("%f ", features[i]);