aboutsummaryrefslogtreecommitdiff
path: root/analysis/R/decode.R
blob: 7d83f2b97c1442c6e7d877fb667297e4f4ee4273 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Copyright 2014 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# This library implements the RAPPOR marginal decoding algorithms using LASSO.

library(glmnet)

# So we don't have to change pwd
source.rappor <- function(rel_path)  {
  abs_path <- paste0(Sys.getenv("RAPPOR_REPO", ""), rel_path)
  source(abs_path)
}

source.rappor('analysis/R/alternative.R')

EstimateBloomCounts <- function(params, obs_counts) {
  # Estimates the number of times each bit in each cohort was set in original
  # Bloom filters.
  #
  # Input:
  #    params: a list of RAPPOR parameters:
  #            k - size of a Bloom filter
  #            h - number of hash functions
  #            m - number of cohorts
  #            p - P(IRR = 1 | PRR = 0)
  #            q - P(IRR = 1 | PRR = 1)
  #            f - Proportion of bits in the Bloom filter that are set randomly
  #                to 0 or 1 regardless of the underlying true bit value
  #    obs_counts: a matrix of size m by (k + 1). Column one contains sample
  #                sizes for each cohort. Other counts indicated how many times
  #                each bit was set in each cohort.
  #
  # Output:
  #    ests: a matrix of size m by k with estimated counts for the probability
  #          of each bit set to 1 in the true Bloom filter.
  #    stds: standard deviation of the estimates.

  p <- params$p
  q <- params$q
  f <- params$f
  m <- params$m
  k <- params$k

  stopifnot(m == nrow(obs_counts), k + 1 == ncol(obs_counts))

  p11 <- q * (1 - f/2) + p * f / 2  # probability of a true 1 reported as 1
  p01 <- p * (1 - f/2) + q * f / 2  # probability of a true 0 reported as 1

  p2 <- p11 - p01  # == (1 - f) * (q - p)

  # When m = 1, obs_counts does not have the right dimensions. Fixing this.
  dim(obs_counts) <- c(m, k + 1)

  ests <- apply(obs_counts, 1, function(cohort_row) {
      N <- cohort_row[1]  # sample size for the cohort -- first column is total
      v <- cohort_row[-1] # counts for individual bits
      (v - p01 * N) / p2  # unbiased estimator for individual bits'
                          # true counts. It can be negative or
                          # exceed the total.
    })

  # NOTE: When k == 1, rows of obs_counts have 2 entries.  Then cohort_row[-1]
  # is a singleton vector, and apply() returns a *vector*.  When rows have 3
  # entries, cohort_row[-1] is a vector of length 2 and apply() returns a
  # *matrix*.
  #
  # Fix this by explicitly setting dimensions.  NOTE: It's k x m, not m x k.
  dim(ests) <- c(k, m)

  total <- sum(obs_counts[,1])

  variances <- apply(obs_counts, 1, function(cohort_row) {
      N <- cohort_row[1]
      v <- cohort_row[-1]
      p_hats <- (v - p01 * N) / (N * p2)  # expectation of a true 1
      p_hats <- pmax(0, pmin(1, p_hats))  # clamp to [0,1]
      r <- p_hats * p11 + (1 - p_hats) * p01  # expectation of a reported 1
      N * r * (1 - r) / p2^2  # variance of the binomial
     })

  dim(variances) <- c(k, m)

  # Transform counts from absolute values to fractional, removing bias due to
  #      variability of reporting between cohorts.
  ests <- apply(ests, 1, function(x) x / obs_counts[,1])
  stds <- apply(variances^.5, 1, function(x) x / obs_counts[,1])

  # Some estimates may be set to infinity, e.g. if f=1. We want to account for
  # this possibility, and set the corresponding counts to 0.
  ests[abs(ests) == Inf] <- 0

  list(estimates = ests, stds = stds)
}

FitLasso <- function(X, Y, intercept = TRUE) {
  # Fits a Lasso model to select a subset of columns of X.
  #
  # Input:
  #    X: a design matrix of size km by M (the number of candidate strings).
  #    Y: a vector of size km with estimated counts from EstimateBloomCounts().
  #    intercept: whether to fit with intercept or not.
  #
  # Output:
  #    a vector of size ncol(X) of coefficients.

  # TODO(mironov): Test cv.glmnet instead of glmnet
  mod <- try(glmnet(X, Y, standardize = FALSE, intercept = intercept,
                    lower.limits = 0,  # outputs are non-negative
                    # Cap the number of non-zero coefficients to 500 or
                    # 80% of the length of Y, whichever is less. The 500 cap
                    # is for performance reasons, 80% is to avoid overfitting.
                    pmax = min(500, length(Y) * .8)),
             silent = TRUE)

  # If fitting fails, return an empty data.frame.
  if (class(mod)[1] == "try-error") {
    coefs <- setNames(rep(0, ncol(X)), colnames(X))
  } else {
    coefs <- coef(mod)
    coefs <- coefs[-1, ncol(coefs), drop = FALSE]  # coefs[1] is the intercept
  }
  coefs
}

PerformInference <- function(X, Y, N, mod, params, alpha, correction) {
  m <- params$m
  p <- params$p
  q <- params$q
  f <- params$f
  h <- params$h

  q2 <- .5 * f * (p + q) + (1 - f) * q
  p2 <- .5 * f * (p + q) + (1 - f) * p
  resid_var <- p2 * (1 - p2) * (N / m) / (q2 - p2)^2

  # Total Sum of Squares (SS).
  TSS <- sum((Y - mean(Y))^2)
  # Error Sum of Squares (ESS).
  ESS <- resid_var * nrow(X)

  betas <- matrix(mod$coefs, ncol = 1)

#   mod_var <- summary(mod$fit)$sigma^2
#   betas_sd <- rep(sqrt(max(resid_var, mod_var) / (m * h)), length(betas))
#
#   z_values <- betas / betas_sd
#
#   # 1-sided t-test.
#   p_values <- pnorm(z_values, lower = FALSE)

  fit <- data.frame(string = colnames(X), Estimate = betas,
                    SD = mod$stds, # z_stat = z_values, pvalue = p_values,
                    stringsAsFactors = FALSE)

#   if (correction == "FDR") {
#     fit <- fit[order(fit$pvalue, decreasing = FALSE), ]
#     ind <- which(fit$pvalue < (1:nrow(fit)) * alpha / nrow(fit))
#     if (length(ind) > 0) {
#       fit <- fit[1:max(ind), ]
#     } else {
#       fit <- fit[numeric(0), ]
#     }
#   } else {
#     fit <- fit[fit$p < alpha, ]
#   }

  fit <- fit[order(fit$Estimate, decreasing = TRUE), ]

  if (nrow(fit) > 0) {
    str_names <- fit$string
    str_names <- str_names[!is.na(str_names)]
    if (length(str_names) > 0 && length(str_names) < nrow(X)) {
      this_data <- as.data.frame(as.matrix(X[, str_names]))
      Y_hat <- predict(lm(Y ~ ., data = this_data))
      RSS <- sum((Y_hat - mean(Y))^2)
    } else {
      RSS <- NA
    }
  } else {
    RSS <- 0
  }

  USS <- TSS - ESS - RSS
  SS <- c(RSS, USS, ESS) / TSS

  list(fit = fit, SS = SS, resid_sigma = sqrt(resid_var))
}

ComputePrivacyGuarantees <- function(params, alpha, N) {
  # Compute privacy parameters and guarantees.
  p <- params$p
  q <- params$q
  f <- params$f
  h <- params$h

  q2 <- .5 * f * (p + q) + (1 - f) * q
  p2 <- .5 * f * (p + q) + (1 - f) * p

  exp_e_one <- ((q2 * (1 - p2)) / (p2 * (1 - q2)))^h
  if (exp_e_one < 1) {
    exp_e_one <- 1 / exp_e_one
  }
  e_one <- log(exp_e_one)

  exp_e_inf <- ((1 - .5 * f) / (.5 * f))^(2 * h)
  e_inf <- log(exp_e_inf)

  std_dev_counts <- sqrt(p2 * (1 - p2) * N) / (q2 - p2)
  detection_freq <- qnorm(1 - alpha) * std_dev_counts / N

  privacy_names <- c("Effective p", "Effective q", "exp(e_1)",
                     "e_1", "exp(e_inf)", "e_inf", "Detection frequency")
  privacy_vals <- c(p2, q2, exp_e_one, e_one, exp_e_inf, e_inf, detection_freq)

  privacy <- data.frame(parameters = privacy_names,
                        values = privacy_vals)
  privacy
}

FitDistribution <- function(estimates_stds, map, quiet = FALSE) {
  # Find a distribution over rows of map that approximates estimates_stds best
  #
  # Input:
  #   estimates_stds: a list of two m x k matrices, one for estimates, another
  #                   for standard errors
  #   map           : an (m * k) x S boolean matrix
  #
  # Output:
  #   a float vector of length S, so that a distribution over map's rows sampled
  #   according to this vector approximates estimates

  S <- ncol(map)  # total number of candidates

  support_coefs <- 1:S

  if (S > length(estimates_stds$estimates) * .8) {
    # the system is close to being underdetermined
    lasso <- FitLasso(map, as.vector(t(estimates_stds$estimates)))

    # Select non-zero coefficients.
    support_coefs <- which(lasso > 0)

    if(!quiet)
      cat("LASSO selected ", length(support_coefs), " non-zero coefficients.\n")
  }

  coefs <- setNames(rep(0, S), colnames(map))

  if(length(support_coefs) > 0) {  # LASSO may return an empty list
    constrained_coefs <- ConstrainedLinModel(map[, support_coefs, drop = FALSE],
                                             estimates_stds)

    coefs[support_coefs] <- constrained_coefs
  }

  coefs
}

Resample <- function(e) {
  # Simulate resampling of the Bloom filter estimates by adding Gaussian noise
  # with estimated standard deviation.
  estimates <- matrix(mapply(function(x, y) x + rnorm(1, 0, y),
                             e$estimates, e$stds),
                             nrow = nrow(e$estimates), ncol = ncol(e$estimates))
  stds <- e$stds * 2^.5

  list(estimates = estimates, stds = stds)
}

# Private function
# Decode for Boolean RAPPOR inputs
# Returns a list with attribute fit only. (Inference and other aspects
# currently not incorporated because they're unnecessary for association.)
.DecodeBoolean <- function(counts, params, num_reports) {
  # Boolean variables are reported without cohorts and to estimate counts,
  # first sum up counts across all cohorts and then run EstimateBloomCounts
  # with the number of cohorts set to 1.
  params$m <- 1  # set number of cohorts to 1
  summed_counts <- colSums(counts)  # sum counts across cohorts
  es <- EstimateBloomCounts(params, summed_counts)  # estimate boolean counts

  ests <- es$estimates[[1]]
  std <- es$stds[[1]]

  fit <- data.frame(
           string         = c("TRUE", "FALSE"),
           estimate       = c(ests * num_reports,
                              num_reports - ests * num_reports),
           std_error      = c(std * num_reports, std * num_reports),
           proportion     = c(ests, 1 - ests),
           prop_std_error = c(std, std))

  low_95 <- fit$proportion - 1.96 * fit$prop_std_error
  high_95 <- fit$proportion + 1.96 * fit$prop_std_error

  fit$prop_low_95 <- pmax(low_95, 0.0)
  fit$prop_high_95 <- pmin(high_95, 1.0)
  rownames(fit) <- fit$string

  return(list(fit = fit))
}

CheckDecodeInputs <- function(counts, map, params) {
  # Returns an error message, or NULL if there is no error.

  if (nrow(map) != (params$m * params$k)) {
    return(sprintf(
        "Map matrix has invalid dimensions: m * k = %d, nrow(map) = %d",
        params$m * params$k, nrow(map)))
  }

  if ((ncol(counts) - 1) != params$k) {
    return(sprintf(paste0(
        "Dimensions of counts file do not match: m = %d, k = %d, ",
        "nrow(counts) = %d, ncol(counts) = %d"), params$m, params$k,
        nrow(counts), ncol(counts)))

  }

  # numerically correct comparison
  if (isTRUE(all.equal((1 - params$f) * (params$p - params$q), 0))) {
    return("Information is lost. Cannot decode.")
  }

  return(NULL)  # no error
}

Decode <- function(counts, map, params, alpha = 0.05,
                   correction = c("Bonferroni"), quiet = FALSE, ...) {

  error_msg <- CheckDecodeInputs(counts, map, params)
  if (!is.null(error_msg)) {
    stop(error_msg)
  }

  k <- params$k
  p <- params$p
  q <- params$q
  f <- params$f
  h <- params$h
  m <- params$m

  S <- ncol(map)  # total number of candidates

  N <- sum(counts[, 1])
  if (k == 1) {
    return(.DecodeBoolean(counts, params, N))
  }

  filter_cohorts <- which(counts[, 1] != 0)  # exclude cohorts with zero reports

  # stretch cohorts to bits
  filter_bits <- as.vector(matrix(1:nrow(map), ncol = m)[,filter_cohorts, drop = FALSE])

  map_filtered <- map[filter_bits, , drop = FALSE]

  es <- EstimateBloomCounts(params, counts)

  estimates_stds_filtered <-
    list(estimates = es$estimates[filter_cohorts, , drop = FALSE],
         stds = es$stds[filter_cohorts, , drop = FALSE])

  coefs_all <- vector()

  # Run the fitting procedure several times (5 seems to be sufficient and not
  # too many) to estimate standard deviation of the output.
  for(r in 1:5) {
    if(r > 1)
      e <- Resample(estimates_stds_filtered)
    else
      e <- estimates_stds_filtered

    coefs_all <- rbind(coefs_all,
                       FitDistribution(e, map_filtered,  quiet))
  }

  coefs_ssd <- N * apply(coefs_all, 2, sd)  # compute sample standard deviations
  coefs_ave <- N * apply(coefs_all, 2, mean)

  # Only select coefficients more than two standard deviations from 0. May
  # inflate empirical SD of the estimates.
  reported <- which(coefs_ave > 1E-6 + 2 * coefs_ssd)

  mod <- list(coefs = coefs_ave[reported], stds = coefs_ssd[reported])

  coefs_ave_zeroed <- coefs_ave
  coefs_ave_zeroed[-reported] <- 0

  residual <- as.vector(t(estimates_stds_filtered$estimates)) -
    map_filtered %*% coefs_ave_zeroed / N

  if (correction == "Bonferroni") {
    alpha <- alpha / S
  }

  inf <- PerformInference(map_filtered[, reported, drop = FALSE],
                          as.vector(t(estimates_stds_filtered$estimates)),
                          N, mod, params, alpha,
                          correction)
  fit <- inf$fit
  # If this is a basic RAPPOR instance, just use the counts for the estimate
  #     (Check if the map is diagonal to tell if this is basic RAPPOR.)
  if (sum(map) == sum(diag(map))) {
    fit$Estimate <- colSums(counts)[-1]
  }

  # Estimates from the model are per instance so must be multipled by h.
  # Standard errors are also adjusted.
  fit$estimate <- floor(fit$Estimate)
  fit$proportion <- fit$estimate / N

  fit$std_error <- floor(fit$SD)
  fit$prop_std_error <- fit$std_error / N

  # 1.96 standard deviations gives 95% confidence interval.
  low_95 <- fit$proportion - 1.96 * fit$prop_std_error
  high_95 <- fit$proportion + 1.96 * fit$prop_std_error
  # Clamp estimated proportion.  pmin/max: vectorized min and max
  fit$prop_low_95 <- pmax(low_95, 0.0)
  fit$prop_high_95 <- pmin(high_95, 1.0)

  fit <- fit[, c("string", "estimate", "std_error", "proportion",
                 "prop_std_error", "prop_low_95", "prop_high_95")]

  allocated_mass <- sum(fit$proportion)
  num_detected <- nrow(fit)

  ss <- round(inf$SS, digits = 3)
  explained_var <- ss[[1]]
  missing_var <- ss[[2]]
  noise_var <- ss[[3]]

  noise_std_dev <- round(inf$resid_sigma, digits = 3)

  # Compute summary of the fit.
  parameters <-
      c("Candidate strings", "Detected strings",
        "Sample size (N)", "Discovered Prop (out of N)",
        "Explained Variance", "Missing Variance", "Noise Variance",
        "Theoretical Noise Std. Dev.")
  values <- c(S, num_detected, N, allocated_mass,
              explained_var, missing_var, noise_var, noise_std_dev)

  res_summary <- data.frame(parameters = parameters, values = values)

  privacy <- ComputePrivacyGuarantees(params, alpha, N)
  params <- data.frame(parameters =
                       c("k", "h", "m", "p", "q", "f", "N", "alpha"),
                       values = c(k, h, m, p, q, f, N, alpha))

  # This is a list of decode stats in a better format than 'summary'.
  metrics <- list(sample_size = N,
                  allocated_mass = allocated_mass,
                  num_detected = num_detected,
                  explained_var = explained_var,
                  missing_var = missing_var)

  list(fit = fit, summary = res_summary, privacy = privacy, params = params,
       lasso = NULL, residual = as.vector(residual),
       counts = counts[, -1], resid = NULL, metrics = metrics,
       ests = es$estimates  # ests needed by Shiny rappor-sim app      
  )
}

ComputeCounts <- function(reports, cohorts, params) {
  # Counts the number of times each bit in the Bloom filters was set for
  #     each cohort.
  #
  # Args:
  #   reports: A list of N elements, each containing the
  #       report for a given report
  #   cohorts: A list of N elements, each containing the
  #       cohort number for a given report
  #   params: A list of parameters for the problem
  #
  # Returns:
  #   An mx(k+1) array containing the number of times each bit was set
  #       in each cohort.

  # Check that the cohorts are evenly assigned. We assume that if there
  #     are m cohorts, each cohort should have approximately N/m reports.
  #     The constraint we impose here simply says that cohort bins should
  #     each have within N/m reports of one another. Since the most popular
  #     cohort is expected to have about O(logN/loglogN) reports (which we )
  #     approximate as O(logN) bins for practical values of N, a discrepancy of
  #     O(N) bins seems significant enough to alter expected behavior. This
  #     threshold can be changed to be more sensitive if desired.
  N <- length(reports)
  cohort_freqs <- table(factor(cohorts, levels = 1:params$m))
  imbalance_threshold <- N / params$m
  if ((max(cohort_freqs) - min(cohort_freqs)) > imbalance_threshold) {
    cat("\nNote: You are using unbalanced cohort assignments, which can",
        "significantly degrade estimation quality!\n\n")
  }

  # Count the times each bit was set, and add cohort counts to first column
  counts <- lapply(1:params$m, function(i)
                   Reduce("+", reports[which(cohorts == i)]))
  counts[which(cohort_freqs == 0)] <- data.frame(rep(0, params$k))
  cbind(cohort_freqs, do.call("rbind", counts))
}