aboutsummaryrefslogtreecommitdiff
path: root/av1/encoder/rd.c
blob: c2d76e7a9a95179420984b22760afcbb8fd6c4dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>

#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_once.h"

#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"

#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/nonrd_opt.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"

#define RD_THRESH_POW 1.25

// The baseline rd thresholds for breaking out of the rd loop for
// certain modes are assumed to be based on 8x8 blocks.
// This table is used to correct for block size.
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES_ALL] = {
  2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, 48, 48, 64, 4, 4, 8, 8, 16, 16
};

static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA]
                                            [EXT_TX_SIZES] = {
                                              { 1, 1, 1, 1 },  // unused
                                              { 1, 1, 0, 0 },
                                              { 0, 0, 1, 0 },
                                            };

static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER]
                                            [EXT_TX_SIZES] = {
                                              { 1, 1, 1, 1 },  // unused
                                              { 1, 1, 0, 0 },
                                              { 0, 0, 1, 0 },
                                              { 0, 1, 1, 1 },
                                            };

static const int av1_ext_tx_set_idx_to_type[2][AOMMAX(EXT_TX_SETS_INTRA,
                                                      EXT_TX_SETS_INTER)] = {
  {
      // Intra
      EXT_TX_SET_DCTONLY,
      EXT_TX_SET_DTT4_IDTX_1DDCT,
      EXT_TX_SET_DTT4_IDTX,
  },
  {
      // Inter
      EXT_TX_SET_DCTONLY,
      EXT_TX_SET_ALL16,
      EXT_TX_SET_DTT9_IDTX_1DDCT,
      EXT_TX_SET_DCT_IDTX,
  },
};

void av1_fill_mode_rates(AV1_COMMON *const cm, ModeCosts *mode_costs,
                         FRAME_CONTEXT *fc) {
  int i, j;

  for (i = 0; i < PARTITION_CONTEXTS; ++i)
    av1_cost_tokens_from_cdf(mode_costs->partition_cost[i],
                             fc->partition_cdf[i], NULL);

  if (cm->current_frame.skip_mode_info.skip_mode_flag) {
    for (i = 0; i < SKIP_MODE_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->skip_mode_cost[i],
                               fc->skip_mode_cdfs[i], NULL);
    }
  }

  for (i = 0; i < SKIP_CONTEXTS; ++i) {
    av1_cost_tokens_from_cdf(mode_costs->skip_txfm_cost[i],
                             fc->skip_txfm_cdfs[i], NULL);
  }

  for (i = 0; i < KF_MODE_CONTEXTS; ++i)
    for (j = 0; j < KF_MODE_CONTEXTS; ++j)
      av1_cost_tokens_from_cdf(mode_costs->y_mode_costs[i][j],
                               fc->kf_y_cdf[i][j], NULL);

  for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
    av1_cost_tokens_from_cdf(mode_costs->mbmode_cost[i], fc->y_mode_cdf[i],
                             NULL);
  for (i = 0; i < CFL_ALLOWED_TYPES; ++i)
    for (j = 0; j < INTRA_MODES; ++j)
      av1_cost_tokens_from_cdf(mode_costs->intra_uv_mode_cost[i][j],
                               fc->uv_mode_cdf[i][j], NULL);

  av1_cost_tokens_from_cdf(mode_costs->filter_intra_mode_cost,
                           fc->filter_intra_mode_cdf, NULL);
  for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
    if (av1_filter_intra_allowed_bsize(cm, i))
      av1_cost_tokens_from_cdf(mode_costs->filter_intra_cost[i],
                               fc->filter_intra_cdfs[i], NULL);
  }

  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
    av1_cost_tokens_from_cdf(mode_costs->switchable_interp_costs[i],
                             fc->switchable_interp_cdf[i], NULL);

  for (i = 0; i < PALATTE_BSIZE_CTXS; ++i) {
    av1_cost_tokens_from_cdf(mode_costs->palette_y_size_cost[i],
                             fc->palette_y_size_cdf[i], NULL);
    av1_cost_tokens_from_cdf(mode_costs->palette_uv_size_cost[i],
                             fc->palette_uv_size_cdf[i], NULL);
    for (j = 0; j < PALETTE_Y_MODE_CONTEXTS; ++j) {
      av1_cost_tokens_from_cdf(mode_costs->palette_y_mode_cost[i][j],
                               fc->palette_y_mode_cdf[i][j], NULL);
    }
  }

  for (i = 0; i < PALETTE_UV_MODE_CONTEXTS; ++i) {
    av1_cost_tokens_from_cdf(mode_costs->palette_uv_mode_cost[i],
                             fc->palette_uv_mode_cdf[i], NULL);
  }

  for (i = 0; i < PALETTE_SIZES; ++i) {
    for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) {
      av1_cost_tokens_from_cdf(mode_costs->palette_y_color_cost[i][j],
                               fc->palette_y_color_index_cdf[i][j], NULL);
      av1_cost_tokens_from_cdf(mode_costs->palette_uv_color_cost[i][j],
                               fc->palette_uv_color_index_cdf[i][j], NULL);
    }
  }

  int sign_cost[CFL_JOINT_SIGNS];
  av1_cost_tokens_from_cdf(sign_cost, fc->cfl_sign_cdf, NULL);
  for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) {
    int *cost_u = mode_costs->cfl_cost[joint_sign][CFL_PRED_U];
    int *cost_v = mode_costs->cfl_cost[joint_sign][CFL_PRED_V];
    if (CFL_SIGN_U(joint_sign) == CFL_SIGN_ZERO) {
      memset(cost_u, 0, CFL_ALPHABET_SIZE * sizeof(*cost_u));
    } else {
      const aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
      av1_cost_tokens_from_cdf(cost_u, cdf_u, NULL);
    }
    if (CFL_SIGN_V(joint_sign) == CFL_SIGN_ZERO) {
      memset(cost_v, 0, CFL_ALPHABET_SIZE * sizeof(*cost_v));
    } else {
      const aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
      av1_cost_tokens_from_cdf(cost_v, cdf_v, NULL);
    }
    for (int u = 0; u < CFL_ALPHABET_SIZE; u++)
      cost_u[u] += sign_cost[joint_sign];
  }

  for (i = 0; i < MAX_TX_CATS; ++i)
    for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
      av1_cost_tokens_from_cdf(mode_costs->tx_size_cost[i][j],
                               fc->tx_size_cdf[i][j], NULL);

  for (i = 0; i < TXFM_PARTITION_CONTEXTS; ++i) {
    av1_cost_tokens_from_cdf(mode_costs->txfm_partition_cost[i],
                             fc->txfm_partition_cdf[i], NULL);
  }

  for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
    int s;
    for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
      if (use_inter_ext_tx_for_txsize[s][i]) {
        av1_cost_tokens_from_cdf(
            mode_costs->inter_tx_type_costs[s][i], fc->inter_ext_tx_cdf[s][i],
            av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[1][s]]);
      }
    }
    for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
      if (use_intra_ext_tx_for_txsize[s][i]) {
        for (j = 0; j < INTRA_MODES; ++j) {
          av1_cost_tokens_from_cdf(
              mode_costs->intra_tx_type_costs[s][i][j],
              fc->intra_ext_tx_cdf[s][i][j],
              av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[0][s]]);
        }
      }
    }
  }
  for (i = 0; i < DIRECTIONAL_MODES; ++i) {
    av1_cost_tokens_from_cdf(mode_costs->angle_delta_cost[i],
                             fc->angle_delta_cdf[i], NULL);
  }
  av1_cost_tokens_from_cdf(mode_costs->intrabc_cost, fc->intrabc_cdf, NULL);

  for (i = 0; i < SPATIAL_PREDICTION_PROBS; ++i) {
    av1_cost_tokens_from_cdf(mode_costs->spatial_pred_cost[i],
                             fc->seg.spatial_pred_seg_cdf[i], NULL);
  }

  for (i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) {
    av1_cost_tokens_from_cdf(mode_costs->tmp_pred_cost[i], fc->seg.pred_cdf[i],
                             NULL);
  }

  if (!frame_is_intra_only(cm)) {
    for (i = 0; i < COMP_INTER_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->comp_inter_cost[i],
                               fc->comp_inter_cdf[i], NULL);
    }

    for (i = 0; i < REF_CONTEXTS; ++i) {
      for (j = 0; j < SINGLE_REFS - 1; ++j) {
        av1_cost_tokens_from_cdf(mode_costs->single_ref_cost[i][j],
                                 fc->single_ref_cdf[i][j], NULL);
      }
    }

    for (i = 0; i < COMP_REF_TYPE_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->comp_ref_type_cost[i],
                               fc->comp_ref_type_cdf[i], NULL);
    }

    for (i = 0; i < UNI_COMP_REF_CONTEXTS; ++i) {
      for (j = 0; j < UNIDIR_COMP_REFS - 1; ++j) {
        av1_cost_tokens_from_cdf(mode_costs->uni_comp_ref_cost[i][j],
                                 fc->uni_comp_ref_cdf[i][j], NULL);
      }
    }

    for (i = 0; i < REF_CONTEXTS; ++i) {
      for (j = 0; j < FWD_REFS - 1; ++j) {
        av1_cost_tokens_from_cdf(mode_costs->comp_ref_cost[i][j],
                                 fc->comp_ref_cdf[i][j], NULL);
      }
    }

    for (i = 0; i < REF_CONTEXTS; ++i) {
      for (j = 0; j < BWD_REFS - 1; ++j) {
        av1_cost_tokens_from_cdf(mode_costs->comp_bwdref_cost[i][j],
                                 fc->comp_bwdref_cdf[i][j], NULL);
      }
    }

    for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->intra_inter_cost[i],
                               fc->intra_inter_cdf[i], NULL);
    }

    for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->newmv_mode_cost[i], fc->newmv_cdf[i],
                               NULL);
    }

    for (i = 0; i < GLOBALMV_MODE_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->zeromv_mode_cost[i],
                               fc->zeromv_cdf[i], NULL);
    }

    for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->refmv_mode_cost[i], fc->refmv_cdf[i],
                               NULL);
    }

    for (i = 0; i < DRL_MODE_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->drl_mode_cost0[i], fc->drl_cdf[i],
                               NULL);
    }
    for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
      av1_cost_tokens_from_cdf(mode_costs->inter_compound_mode_cost[i],
                               fc->inter_compound_mode_cdf[i], NULL);
    for (i = 0; i < BLOCK_SIZES_ALL; ++i)
      av1_cost_tokens_from_cdf(mode_costs->compound_type_cost[i],
                               fc->compound_type_cdf[i], NULL);
    for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
      if (av1_is_wedge_used(i)) {
        av1_cost_tokens_from_cdf(mode_costs->wedge_idx_cost[i],
                                 fc->wedge_idx_cdf[i], NULL);
      }
    }
    for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->interintra_cost[i],
                               fc->interintra_cdf[i], NULL);
      av1_cost_tokens_from_cdf(mode_costs->interintra_mode_cost[i],
                               fc->interintra_mode_cdf[i], NULL);
    }
    for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->wedge_interintra_cost[i],
                               fc->wedge_interintra_cdf[i], NULL);
    }
    for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) {
      av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost[i],
                               fc->motion_mode_cdf[i], NULL);
    }
    for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) {
      av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost1[i],
                               fc->obmc_cdf[i], NULL);
    }
    for (i = 0; i < COMP_INDEX_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->comp_idx_cost[i],
                               fc->compound_index_cdf[i], NULL);
    }
    for (i = 0; i < COMP_GROUP_IDX_CONTEXTS; ++i) {
      av1_cost_tokens_from_cdf(mode_costs->comp_group_idx_cost[i],
                               fc->comp_group_idx_cdf[i], NULL);
    }
  }
}

void av1_fill_lr_rates(ModeCosts *mode_costs, FRAME_CONTEXT *fc) {
  av1_cost_tokens_from_cdf(mode_costs->switchable_restore_cost,
                           fc->switchable_restore_cdf, NULL);
  av1_cost_tokens_from_cdf(mode_costs->wiener_restore_cost,
                           fc->wiener_restore_cdf, NULL);
  av1_cost_tokens_from_cdf(mode_costs->sgrproj_restore_cost,
                           fc->sgrproj_restore_cdf, NULL);
}

// Values are now correlated to quantizer.
static int sad_per_bit_lut_8[QINDEX_RANGE];
static int sad_per_bit_lut_10[QINDEX_RANGE];
static int sad_per_bit_lut_12[QINDEX_RANGE];

static void init_me_luts_bd(int *bit16lut, int range,
                            aom_bit_depth_t bit_depth) {
  int i;
  // Initialize the sad lut tables using a formulaic calculation for now.
  // This is to make it easier to resolve the impact of experimental changes
  // to the quantizer tables.
  for (i = 0; i < range; i++) {
    const double q = av1_convert_qindex_to_q(i, bit_depth);
    bit16lut[i] = (int)(0.0418 * q + 2.4107);
  }
}

static void init_me_luts(void) {
  init_me_luts_bd(sad_per_bit_lut_8, QINDEX_RANGE, AOM_BITS_8);
  init_me_luts_bd(sad_per_bit_lut_10, QINDEX_RANGE, AOM_BITS_10);
  init_me_luts_bd(sad_per_bit_lut_12, QINDEX_RANGE, AOM_BITS_12);
}

void av1_init_me_luts(void) { aom_once(init_me_luts); }

static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12,
                                         8,  8,  4,  4,  2,  2,  1,  0 };

static const int rd_layer_depth_factor[7] = {
  160, 160, 160, 160, 192, 208, 224
};

// Returns the default rd multiplier for inter frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_inter_rd_multiplier(int qindex) {
  return 3.2 + (0.0015 * (double)qindex);
}

// Returns the default rd multiplier for ARF/Golden Frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_arf_rd_multiplier(int qindex) {
  return 3.25 + (0.0015 * (double)qindex);
}

// Returns the default rd multiplier for key frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_kf_rd_multiplier(int qindex) {
  return 3.3 + (0.0015 * (double)qindex);
}

int av1_compute_rd_mult_based_on_qindex(aom_bit_depth_t bit_depth,
                                        FRAME_UPDATE_TYPE update_type,
                                        int qindex) {
  const int q = av1_dc_quant_QTX(qindex, 0, bit_depth);
  int64_t rdmult = q * q;
  if (update_type == KF_UPDATE) {
    double def_rd_q_mult = def_kf_rd_multiplier(q);
    rdmult = (int64_t)((double)rdmult * def_rd_q_mult);
  } else if ((update_type == GF_UPDATE) || (update_type == ARF_UPDATE)) {
    double def_rd_q_mult = def_arf_rd_multiplier(q);
    rdmult = (int64_t)((double)rdmult * def_rd_q_mult);
  } else {
    double def_rd_q_mult = def_inter_rd_multiplier(q);
    rdmult = (int64_t)((double)rdmult * def_rd_q_mult);
  }

  switch (bit_depth) {
    case AOM_BITS_8: break;
    case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break;
    case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break;
    default:
      assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
      return -1;
  }
  return rdmult > 0 ? (int)AOMMIN(rdmult, INT_MAX) : 1;
}

int av1_compute_rd_mult(const int qindex, const aom_bit_depth_t bit_depth,
                        const FRAME_UPDATE_TYPE update_type,
                        const int layer_depth, const int boost_index,
                        const FRAME_TYPE frame_type,
                        const int use_fixed_qp_offsets,
                        const int is_stat_consumption_stage) {
  int64_t rdmult =
      av1_compute_rd_mult_based_on_qindex(bit_depth, update_type, qindex);
  if (is_stat_consumption_stage && !use_fixed_qp_offsets &&
      (frame_type != KEY_FRAME)) {
    // Layer depth adjustment
    rdmult = (rdmult * rd_layer_depth_factor[layer_depth]) >> 7;
    // ARF boost adjustment
    rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
  }
  return (int)rdmult;
}

int av1_get_deltaq_offset(aom_bit_depth_t bit_depth, int qindex, double beta) {
  assert(beta > 0.0);
  int q = av1_dc_quant_QTX(qindex, 0, bit_depth);
  int newq = (int)rint(q / sqrt(beta));
  int orig_qindex = qindex;
  if (newq == q) {
    return 0;
  }
  if (newq < q) {
    while (qindex > 0) {
      qindex--;
      q = av1_dc_quant_QTX(qindex, 0, bit_depth);
      if (newq >= q) {
        break;
      }
    }
  } else {
    while (qindex < MAXQ) {
      qindex++;
      q = av1_dc_quant_QTX(qindex, 0, bit_depth);
      if (newq <= q) {
        break;
      }
    }
  }
  return qindex - orig_qindex;
}

int av1_adjust_q_from_delta_q_res(int delta_q_res, int prev_qindex,
                                  int curr_qindex) {
  curr_qindex = clamp(curr_qindex, delta_q_res, 256 - delta_q_res);
  const int sign_deltaq_index = curr_qindex - prev_qindex >= 0 ? 1 : -1;
  const int deltaq_deadzone = delta_q_res / 4;
  const int qmask = ~(delta_q_res - 1);
  int abs_deltaq_index = abs(curr_qindex - prev_qindex);
  abs_deltaq_index = (abs_deltaq_index + deltaq_deadzone) & qmask;
  int adjust_qindex = prev_qindex + sign_deltaq_index * abs_deltaq_index;
  adjust_qindex = AOMMAX(adjust_qindex, MINQ + 1);
  return adjust_qindex;
}

int av1_get_adaptive_rdmult(const AV1_COMP *cpi, double beta) {
  assert(beta > 0.0);
  const AV1_COMMON *cm = &cpi->common;

  const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
  const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
  const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
  const FRAME_TYPE frame_type = cm->current_frame.frame_type;

  const int qindex_rdmult = cm->quant_params.base_qindex;
  return (int)(av1_compute_rd_mult(
                   qindex_rdmult, cm->seq_params->bit_depth,
                   cpi->ppi->gf_group.update_type[cpi->gf_frame_index],
                   layer_depth, boost_index, frame_type,
                   cpi->oxcf.q_cfg.use_fixed_qp_offsets,
                   is_stat_consumption_stage(cpi)) /
               beta);
}

static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) {
  double q;
  switch (bit_depth) {
    case AOM_BITS_8: q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_8) / 4.0; break;
    case AOM_BITS_10:
      q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_10) / 16.0;
      break;
    case AOM_BITS_12:
      q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_12) / 64.0;
      break;
    default:
      assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
      return -1;
  }
  // TODO(debargha): Adjust the function below.
  return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
}

void av1_set_sad_per_bit(const AV1_COMP *cpi, int *sadperbit, int qindex) {
  switch (cpi->common.seq_params->bit_depth) {
    case AOM_BITS_8: *sadperbit = sad_per_bit_lut_8[qindex]; break;
    case AOM_BITS_10: *sadperbit = sad_per_bit_lut_10[qindex]; break;
    case AOM_BITS_12: *sadperbit = sad_per_bit_lut_12[qindex]; break;
    default:
      assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
  }
}

static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd,
                                 int use_nonrd_pick_mode) {
  int i, bsize, segment_id;
  THR_MODES mode_indices[RTC_REFS * RTC_MODES] = { 0 };
  int num_modes_count = use_nonrd_pick_mode ? 0 : MAX_MODES;

  if (use_nonrd_pick_mode) {
    for (int r_idx = 0; r_idx < RTC_REFS; r_idx++) {
      const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0];
      if (ref != INTRA_FRAME) {
        for (i = 0; i < RTC_INTER_MODES; i++)
          mode_indices[num_modes_count++] =
              mode_idx[ref][mode_offset(inter_mode_list[i])];
      } else {
        for (i = 0; i < RTC_INTRA_MODES; i++)
          mode_indices[num_modes_count++] =
              mode_idx[ref][mode_offset(intra_mode_list[i])];
      }
    }
  }

  for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
    const int qindex = clamp(
        av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex) +
            cm->quant_params.y_dc_delta_q,
        0, MAXQ);
    const int q = compute_rd_thresh_factor(qindex, cm->seq_params->bit_depth);

    for (bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) {
      // Threshold here seems unnecessarily harsh but fine given actual
      // range of values used for cpi->sf.thresh_mult[].
      const int t = q * rd_thresh_block_size_factor[bsize];
      const int thresh_max = INT_MAX / t;

      for (i = 0; i < num_modes_count; ++i) {
        const int mode_index = use_nonrd_pick_mode ? mode_indices[i] : i;
        rd->threshes[segment_id][bsize][mode_index] =
            rd->thresh_mult[mode_index] < thresh_max
                ? rd->thresh_mult[mode_index] * t / 4
                : INT_MAX;
      }
    }
  }
}

void av1_fill_coeff_costs(CoeffCosts *coeff_costs, FRAME_CONTEXT *fc,
                          const int num_planes) {
  const int nplanes = AOMMIN(num_planes, PLANE_TYPES);
  for (int eob_multi_size = 0; eob_multi_size < 7; ++eob_multi_size) {
    for (int plane = 0; plane < nplanes; ++plane) {
      LV_MAP_EOB_COST *pcost = &coeff_costs->eob_costs[eob_multi_size][plane];

      for (int ctx = 0; ctx < 2; ++ctx) {
        aom_cdf_prob *pcdf;
        switch (eob_multi_size) {
          case 0: pcdf = fc->eob_flag_cdf16[plane][ctx]; break;
          case 1: pcdf = fc->eob_flag_cdf32[plane][ctx]; break;
          case 2: pcdf = fc->eob_flag_cdf64[plane][ctx]; break;
          case 3: pcdf = fc->eob_flag_cdf128[plane][ctx]; break;
          case 4: pcdf = fc->eob_flag_cdf256[plane][ctx]; break;
          case 5: pcdf = fc->eob_flag_cdf512[plane][ctx]; break;
          case 6:
          default: pcdf = fc->eob_flag_cdf1024[plane][ctx]; break;
        }
        av1_cost_tokens_from_cdf(pcost->eob_cost[ctx], pcdf, NULL);
      }
    }
  }
  for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) {
    for (int plane = 0; plane < nplanes; ++plane) {
      LV_MAP_COEFF_COST *pcost = &coeff_costs->coeff_costs[tx_size][plane];

      for (int ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx)
        av1_cost_tokens_from_cdf(pcost->txb_skip_cost[ctx],
                                 fc->txb_skip_cdf[tx_size][ctx], NULL);

      for (int ctx = 0; ctx < SIG_COEF_CONTEXTS_EOB; ++ctx)
        av1_cost_tokens_from_cdf(pcost->base_eob_cost[ctx],
                                 fc->coeff_base_eob_cdf[tx_size][plane][ctx],
                                 NULL);
      for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx)
        av1_cost_tokens_from_cdf(pcost->base_cost[ctx],
                                 fc->coeff_base_cdf[tx_size][plane][ctx], NULL);

      for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) {
        pcost->base_cost[ctx][4] = 0;
        pcost->base_cost[ctx][5] = pcost->base_cost[ctx][1] +
                                   av1_cost_literal(1) -
                                   pcost->base_cost[ctx][0];
        pcost->base_cost[ctx][6] =
            pcost->base_cost[ctx][2] - pcost->base_cost[ctx][1];
        pcost->base_cost[ctx][7] =
            pcost->base_cost[ctx][3] - pcost->base_cost[ctx][2];
      }

      for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx)
        av1_cost_tokens_from_cdf(pcost->eob_extra_cost[ctx],
                                 fc->eob_extra_cdf[tx_size][plane][ctx], NULL);

      for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx)
        av1_cost_tokens_from_cdf(pcost->dc_sign_cost[ctx],
                                 fc->dc_sign_cdf[plane][ctx], NULL);

      for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) {
        int br_rate[BR_CDF_SIZE];
        int prev_cost = 0;
        int i, j;
        av1_cost_tokens_from_cdf(
            br_rate, fc->coeff_br_cdf[AOMMIN(tx_size, TX_32X32)][plane][ctx],
            NULL);
        // printf("br_rate: ");
        // for(j = 0; j < BR_CDF_SIZE; j++)
        //  printf("%4d ", br_rate[j]);
        // printf("\n");
        for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) {
          for (j = 0; j < BR_CDF_SIZE - 1; j++) {
            pcost->lps_cost[ctx][i + j] = prev_cost + br_rate[j];
          }
          prev_cost += br_rate[j];
        }
        pcost->lps_cost[ctx][i] = prev_cost;
        // printf("lps_cost: %d %d %2d : ", tx_size, plane, ctx);
        // for (i = 0; i <= COEFF_BASE_RANGE; i++)
        //  printf("%5d ", pcost->lps_cost[ctx][i]);
        // printf("\n");
      }
      for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) {
        pcost->lps_cost[ctx][0 + COEFF_BASE_RANGE + 1] =
            pcost->lps_cost[ctx][0];
        for (int i = 1; i <= COEFF_BASE_RANGE; ++i) {
          pcost->lps_cost[ctx][i + COEFF_BASE_RANGE + 1] =
              pcost->lps_cost[ctx][i] - pcost->lps_cost[ctx][i - 1];
        }
      }
    }
  }
}

void av1_fill_mv_costs(const nmv_context *nmvc, int integer_mv, int usehp,
                       MvCosts *mv_costs) {
  // Avoid accessing 'mv_costs' when it is not allocated.
  if (mv_costs == NULL) return;

  mv_costs->nmv_cost[0] = &mv_costs->nmv_cost_alloc[0][MV_MAX];
  mv_costs->nmv_cost[1] = &mv_costs->nmv_cost_alloc[1][MV_MAX];
  mv_costs->nmv_cost_hp[0] = &mv_costs->nmv_cost_hp_alloc[0][MV_MAX];
  mv_costs->nmv_cost_hp[1] = &mv_costs->nmv_cost_hp_alloc[1][MV_MAX];
  if (integer_mv) {
    mv_costs->mv_cost_stack = (int **)&mv_costs->nmv_cost;
    av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack,
                             nmvc, MV_SUBPEL_NONE);
  } else {
    mv_costs->mv_cost_stack =
        usehp ? mv_costs->nmv_cost_hp : mv_costs->nmv_cost;
    av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack,
                             nmvc, usehp);
  }
}

void av1_fill_dv_costs(const nmv_context *ndvc, IntraBCMVCosts *dv_costs) {
  dv_costs->dv_costs[0] = &dv_costs->dv_costs_alloc[0][MV_MAX];
  dv_costs->dv_costs[1] = &dv_costs->dv_costs_alloc[1][MV_MAX];
  av1_build_nmv_cost_table(dv_costs->joint_mv, dv_costs->dv_costs, ndvc,
                           MV_SUBPEL_NONE);
}

// Populates speed features based on codec control settings (of type
// COST_UPDATE_TYPE) and expected speed feature settings (of type
// INTERNAL_COST_UPDATE_TYPE) by considering the least frequent cost update.
// The populated/updated speed features are used for cost updates in the
// encoder.
// WARNING: Population of unified cost update frequency needs to be taken care
// accordingly, in case of any modifications/additions to the enum
// COST_UPDATE_TYPE/INTERNAL_COST_UPDATE_TYPE.
static INLINE void populate_unified_cost_update_freq(
    const CostUpdateFreq cost_upd_freq, SPEED_FEATURES *const sf) {
  INTER_MODE_SPEED_FEATURES *const inter_sf = &sf->inter_sf;
  // Mapping of entropy cost update frequency from the encoder's codec control
  // settings of type COST_UPDATE_TYPE to speed features of type
  // INTERNAL_COST_UPDATE_TYPE.
  static const INTERNAL_COST_UPDATE_TYPE
      map_cost_upd_to_internal_cost_upd[NUM_COST_UPDATE_TYPES] = {
        INTERNAL_COST_UPD_SB, INTERNAL_COST_UPD_SBROW, INTERNAL_COST_UPD_TILE,
        INTERNAL_COST_UPD_OFF
      };

  inter_sf->mv_cost_upd_level =
      AOMMIN(inter_sf->mv_cost_upd_level,
             map_cost_upd_to_internal_cost_upd[cost_upd_freq.mv]);
  inter_sf->coeff_cost_upd_level =
      AOMMIN(inter_sf->coeff_cost_upd_level,
             map_cost_upd_to_internal_cost_upd[cost_upd_freq.coeff]);
  inter_sf->mode_cost_upd_level =
      AOMMIN(inter_sf->mode_cost_upd_level,
             map_cost_upd_to_internal_cost_upd[cost_upd_freq.mode]);
  sf->intra_sf.dv_cost_upd_level =
      AOMMIN(sf->intra_sf.dv_cost_upd_level,
             map_cost_upd_to_internal_cost_upd[cost_upd_freq.dv]);
}

// Checks if entropy costs should be initialized/updated at frame level or not.
static INLINE int is_frame_level_cost_upd_freq_set(
    const AV1_COMMON *const cm, const INTERNAL_COST_UPDATE_TYPE cost_upd_level,
    const int use_nonrd_pick_mode, const int frames_since_key) {
  const int fill_costs =
      frame_is_intra_only(cm) ||
      (use_nonrd_pick_mode ? frames_since_key < 2
                           : (cm->current_frame.frame_number & 0x07) == 1);
  return ((!use_nonrd_pick_mode && cost_upd_level != INTERNAL_COST_UPD_OFF) ||
          cost_upd_level == INTERNAL_COST_UPD_TILE || fill_costs);
}

// Decide whether we want to update the mode entropy cost for the current frame.
// The logit is currently inherited from selective_disable_cdf_rtc.
static AOM_INLINE int should_force_mode_cost_update(const AV1_COMP *cpi) {
  const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf;
  if (!rt_sf->frame_level_mode_cost_update) {
    return false;
  }

  if (cpi->oxcf.algo_cfg.cdf_update_mode == 2) {
    return cpi->frames_since_last_update == 1;
  } else if (cpi->oxcf.algo_cfg.cdf_update_mode == 1) {
    if (cpi->svc.number_spatial_layers == 1 &&
        cpi->svc.number_temporal_layers == 1) {
      const AV1_COMMON *const cm = &cpi->common;
      const RATE_CONTROL *const rc = &cpi->rc;

      return frame_is_intra_only(cm) || is_frame_resize_pending(cpi) ||
             rc->high_source_sad || rc->frames_since_key < 10 ||
             cpi->cyclic_refresh->counter_encode_maxq_scene_change < 10 ||
             cm->current_frame.frame_number % 8 == 0;
    } else if (cpi->svc.number_temporal_layers > 1) {
      return cpi->svc.temporal_layer_id != cpi->svc.number_temporal_layers - 1;
    }
  }

  return false;
}

void av1_initialize_rd_consts(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &cpi->td.mb;
  SPEED_FEATURES *const sf = &cpi->sf;
  RD_OPT *const rd = &cpi->rd;
  int use_nonrd_pick_mode = cpi->sf.rt_sf.use_nonrd_pick_mode;
  int frames_since_key = cpi->rc.frames_since_key;

  const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
  const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
  const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
  const FRAME_TYPE frame_type = cm->current_frame.frame_type;

  const int qindex_rdmult =
      cm->quant_params.base_qindex + cm->quant_params.y_dc_delta_q;
  rd->RDMULT = av1_compute_rd_mult(
      qindex_rdmult, cm->seq_params->bit_depth,
      cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
      boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
      is_stat_consumption_stage(cpi));
#if CONFIG_RD_COMMAND
  if (cpi->oxcf.pass == 2) {
    const RD_COMMAND *rd_command = &cpi->rd_command;
    if (rd_command->option_ls[rd_command->frame_index] ==
        RD_OPTION_SET_Q_RDMULT) {
      rd->RDMULT = rd_command->rdmult_ls[rd_command->frame_index];
    }
  }
#endif  // CONFIG_RD_COMMAND

  av1_set_error_per_bit(&x->errorperbit, rd->RDMULT);

  set_block_thresholds(cm, rd, cpi->sf.rt_sf.use_nonrd_pick_mode);

  populate_unified_cost_update_freq(cpi->oxcf.cost_upd_freq, sf);
  const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf;
  // Frame level mv cost update
  if (is_frame_level_cost_upd_freq_set(cm, inter_sf->mv_cost_upd_level,
                                       use_nonrd_pick_mode, frames_since_key))
    av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
                      cm->features.allow_high_precision_mv, x->mv_costs);

  // Frame level coefficient cost update
  if (is_frame_level_cost_upd_freq_set(cm, inter_sf->coeff_cost_upd_level,
                                       use_nonrd_pick_mode, frames_since_key))
    av1_fill_coeff_costs(&x->coeff_costs, cm->fc, av1_num_planes(cm));

  // Frame level mode cost update
  if (should_force_mode_cost_update(cpi) ||
      is_frame_level_cost_upd_freq_set(cm, inter_sf->mode_cost_upd_level,
                                       use_nonrd_pick_mode, frames_since_key))
    av1_fill_mode_rates(cm, &x->mode_costs, cm->fc);

  // Frame level dv cost update
  if (av1_need_dv_costs(cpi)) {
    if (cpi->td.dv_costs_alloc == NULL) {
      CHECK_MEM_ERROR(
          cm, cpi->td.dv_costs_alloc,
          (IntraBCMVCosts *)aom_malloc(sizeof(*cpi->td.dv_costs_alloc)));
      cpi->td.mb.dv_costs = cpi->td.dv_costs_alloc;
    }
    av1_fill_dv_costs(&cm->fc->ndvc, x->dv_costs);
  }
}

static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
  // NOTE: The tables below must be of the same size.

  // The functions described below are sampled at the four most significant
  // bits of x^2 + 8 / 256.

  // Normalized rate:
  // This table models the rate for a Laplacian source with given variance
  // when quantized with a uniform quantizer with given stepsize. The
  // closed form expression is:
  // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
  // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
  // and H(x) is the binary entropy function.
  static const int rate_tab_q10[] = {
    65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142,
    4044,  3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186,
    3133,  3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353,
    2290,  2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651,
    1608,  1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963,
    911,   864,  821,  781,  745,  680,  623,  574,  530,  490,  455,  424,
    395,   345,  304,  269,  239,  213,  190,  171,  154,  126,  104,  87,
    73,    61,   52,   44,   38,   28,   21,   16,   12,   10,   8,    6,
    5,     3,    2,    1,    1,    1,    0,    0,
  };
  // Normalized distortion:
  // This table models the normalized distortion for a Laplacian source
  // with given variance when quantized with a uniform quantizer
  // with given stepsize. The closed form expression is:
  // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
  // where x = qpstep / sqrt(variance).
  // Note the actual distortion is Dn * variance.
  static const int dist_tab_q10[] = {
    0,    0,    1,    1,    1,    2,    2,    2,    3,    3,    4,    5,
    5,    6,    7,    7,    8,    9,    11,   12,   13,   15,   16,   17,
    18,   21,   24,   26,   29,   31,   34,   36,   39,   44,   49,   54,
    59,   64,   69,   73,   78,   88,   97,   106,  115,  124,  133,  142,
    151,  167,  184,  200,  215,  231,  245,  260,  274,  301,  327,  351,
    375,  397,  418,  439,  458,  495,  528,  559,  587,  613,  637,  659,
    680,  717,  749,  777,  801,  823,  842,  859,  874,  899,  919,  936,
    949,  960,  969,  977,  983,  994,  1001, 1006, 1010, 1013, 1015, 1017,
    1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
  };
  static const int xsq_iq_q10[] = {
    0,      4,      8,      12,     16,     20,     24,     28,     32,
    40,     48,     56,     64,     72,     80,     88,     96,     112,
    128,    144,    160,    176,    192,    208,    224,    256,    288,
    320,    352,    384,    416,    448,    480,    544,    608,    672,
    736,    800,    864,    928,    992,    1120,   1248,   1376,   1504,
    1632,   1760,   1888,   2016,   2272,   2528,   2784,   3040,   3296,
    3552,   3808,   4064,   4576,   5088,   5600,   6112,   6624,   7136,
    7648,   8160,   9184,   10208,  11232,  12256,  13280,  14304,  15328,
    16352,  18400,  20448,  22496,  24544,  26592,  28640,  30688,  32736,
    36832,  40928,  45024,  49120,  53216,  57312,  61408,  65504,  73696,
    81888,  90080,  98272,  106464, 114656, 122848, 131040, 147424, 163808,
    180192, 196576, 212960, 229344, 245728,
  };
  const int tmp = (xsq_q10 >> 2) + 8;
  const int k = get_msb(tmp) - 3;
  const int xq = (k << 3) + ((tmp >> k) & 0x7);
  const int one_q10 = 1 << 10;
  const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
  const int b_q10 = one_q10 - a_q10;
  *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
  *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
}

void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2,
                                  unsigned int qstep, int *rate,
                                  int64_t *dist) {
  // This function models the rate and distortion for a Laplacian
  // source with given variance when quantized with a uniform quantizer
  // with given stepsize. The closed form expressions are in:
  // Hang and Chen, "Source Model for transform video coder and its
  // application - Part I: Fundamental Theory", IEEE Trans. Circ.
  // Sys. for Video Tech., April 1997.
  if (var == 0) {
    *rate = 0;
    *dist = 0;
  } else {
    int d_q10, r_q10;
    static const uint32_t MAX_XSQ_Q10 = 245727;
    const uint64_t xsq_q10_64 =
        (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
    const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10);
    model_rd_norm(xsq_q10, &r_q10, &d_q10);
    *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT);
    *dist = (var * (int64_t)d_q10 + 512) >> 10;
  }
}

static double interp_cubic(const double *p, double x) {
  return p[1] + 0.5 * x *
                    (p[2] - p[0] +
                     x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] +
                          x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}

/*
static double interp_bicubic(const double *p, int p_stride, double x,
                             double y) {
  double q[4];
  q[0] = interp_cubic(p, x);
  q[1] = interp_cubic(p + p_stride, x);
  q[2] = interp_cubic(p + 2 * p_stride, x);
  q[3] = interp_cubic(p + 3 * p_stride, x);
  return interp_cubic(q, y);
}
*/

static const uint8_t bsize_curvfit_model_cat_lookup[BLOCK_SIZES_ALL] = {
  0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3
};

static int sse_norm_curvfit_model_cat_lookup(double sse_norm) {
  return (sse_norm > 16.0);
}

// Models distortion by sse using a logistic function on
// l = log2(sse / q^2) as:
// dbysse = 16 / (1 + k exp(l + c))
static double get_dbysse_logistic(double l, double c, double k) {
  const double A = 16.0;
  const double dbysse = A / (1 + k * exp(l + c));
  return dbysse;
}

// Models rate using a clamped linear function on
// l = log2(sse / q^2) as:
// rate = max(0, a + b * l)
static double get_rate_clamplinear(double l, double a, double b) {
  const double rate = a + b * l;
  return (rate < 0 ? 0 : rate);
}

static const uint8_t bsize_surffit_model_cat_lookup[BLOCK_SIZES_ALL] = {
  0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 0, 0, 2, 2, 4, 4
};

static const double surffit_rate_params[9][4] = {
  {
      638.390212,
      2.253108,
      166.585650,
      -3.939401,
  },
  {
      5.256905,
      81.997240,
      -1.321771,
      17.694216,
  },
  {
      -74.193045,
      72.431868,
      -19.033152,
      15.407276,
  },
  {
      416.770113,
      14.794188,
      167.686830,
      -6.997756,
  },
  {
      378.511276,
      9.558376,
      154.658843,
      -6.635663,
  },
  {
      277.818787,
      4.413180,
      150.317637,
      -9.893038,
  },
  {
      142.212132,
      11.542038,
      94.393964,
      -5.518517,
  },
  {
      219.100256,
      4.007421,
      108.932852,
      -6.981310,
  },
  {
      222.261971,
      3.251049,
      95.972916,
      -5.609789,
  },
};

static const double surffit_dist_params[7] = { 1.475844,  4.328362, -5.680233,
                                               -0.500994, 0.554585, 4.839478,
                                               -0.695837 };

static void rate_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm,
                                             double *rpar) {
  const int cat = bsize_surffit_model_cat_lookup[bsize];
  rpar[0] = surffit_rate_params[cat][0] + surffit_rate_params[cat][1] * xm;
  rpar[1] = surffit_rate_params[cat][2] + surffit_rate_params[cat][3] * xm;
}

static void dist_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm,
                                             double *dpar) {
  (void)bsize;
  const double *params = surffit_dist_params;
  dpar[0] = params[0] + params[1] / (1 + exp((xm + params[2]) * params[3]));
  dpar[1] = params[4] + params[5] * exp(params[6] * xm);
}

void av1_model_rd_surffit(BLOCK_SIZE bsize, double sse_norm, double xm,
                          double yl, double *rate_f, double *distbysse_f) {
  (void)sse_norm;
  double rpar[2], dpar[2];
  rate_surffit_model_params_lookup(bsize, xm, rpar);
  dist_surffit_model_params_lookup(bsize, xm, dpar);

  *rate_f = get_rate_clamplinear(yl, rpar[0], rpar[1]);
  *distbysse_f = get_dbysse_logistic(yl, dpar[0], dpar[1]);
}

static const double interp_rgrid_curv[4][65] = {
  {
      0.000000,    0.000000,    0.000000,    0.000000,    0.000000,
      0.000000,    0.000000,    0.000000,    0.000000,    0.000000,
      0.000000,    118.257702,  120.210658,  121.434853,  122.100487,
      122.377758,  122.436865,  72.290102,   96.974289,   101.652727,
      126.830141,  140.417377,  157.644879,  184.315291,  215.823873,
      262.300169,  335.919859,  420.624173,  519.185032,  619.854243,
      726.053595,  827.663369,  933.127475,  1037.988755, 1138.839609,
      1233.342933, 1333.508064, 1428.760126, 1533.396364, 1616.952052,
      1744.539319, 1803.413586, 1951.466618, 1994.227838, 2086.031680,
      2148.635443, 2239.068450, 2222.590637, 2338.859809, 2402.929011,
      2418.727875, 2435.342670, 2471.159469, 2523.187446, 2591.183827,
      2674.905840, 2774.110714, 2888.555675, 3017.997952, 3162.194773,
      3320.903365, 3493.880956, 3680.884773, 3881.672045, 4096.000000,
  },
  {
      0.000000,    0.000000,    0.000000,    0.000000,    0.000000,
      0.000000,    0.000000,    0.000000,    0.000000,    0.000000,
      0.000000,    13.087244,   15.919735,   25.930313,   24.412411,
      28.567417,   29.924194,   30.857010,   32.742979,   36.382570,
      39.210386,   42.265690,   47.378572,   57.014850,   82.740067,
      137.346562,  219.968084,  316.781856,  415.643773,  516.706538,
      614.914364,  714.303763,  815.512135,  911.210485,  1008.501528,
      1109.787854, 1213.772279, 1322.922561, 1414.752579, 1510.505641,
      1615.741888, 1697.989032, 1780.123933, 1847.453790, 1913.742309,
      1960.828122, 2047.500168, 2085.454095, 2129.230668, 2158.171824,
      2182.231724, 2217.684864, 2269.589211, 2337.264824, 2420.618694,
      2519.557814, 2633.989178, 2763.819779, 2908.956609, 3069.306660,
      3244.776927, 3435.274401, 3640.706076, 3860.978945, 4096.000000,
  },
  {
      0.000000,    0.000000,    0.000000,    0.000000,    0.000000,
      0.000000,    0.000000,    0.000000,    0.000000,    0.000000,
      0.000000,    4.656893,    5.123633,    5.594132,    6.162376,
      6.918433,    7.768444,    8.739415,    10.105862,   11.477328,
      13.236604,   15.421030,   19.093623,   25.801871,   46.724612,
      98.841054,   181.113466,  272.586364,  359.499769,  445.546343,
      525.944439,  605.188743,  681.793483,  756.668359,  838.486885,
      926.950356,  1015.482542, 1113.353926, 1204.897193, 1288.871992,
      1373.464145, 1455.746628, 1527.796460, 1588.475066, 1658.144771,
      1710.302500, 1807.563351, 1863.197608, 1927.281616, 1964.450872,
      2022.719898, 2100.041145, 2185.205712, 2280.993936, 2387.616216,
      2505.282950, 2634.204540, 2774.591385, 2926.653884, 3090.602436,
      3266.647443, 3454.999303, 3655.868416, 3869.465182, 4096.000000,
  },
  {
      0.000000,    0.000000,    0.000000,    0.000000,    0.000000,
      0.000000,    0.000000,    0.000000,    0.000000,    0.000000,
      0.000000,    0.337370,    0.391916,    0.468839,    0.566334,
      0.762564,    1.069225,    1.384361,    1.787581,    2.293948,
      3.251909,    4.412991,    8.050068,    11.606073,   27.668092,
      65.227758,   128.463938,  202.097653,  262.715851,  312.464873,
      355.601398,  400.609054,  447.201352,  495.761568,  552.871938,
      619.067625,  691.984883,  773.753288,  860.628503,  946.262808,
      1019.805896, 1106.061360, 1178.422145, 1244.852258, 1302.173987,
      1399.650266, 1548.092912, 1545.928652, 1670.817500, 1694.523823,
      1779.195362, 1882.155494, 1990.662097, 2108.325181, 2235.456119,
      2372.366287, 2519.367059, 2676.769812, 2844.885918, 3024.026754,
      3214.503695, 3416.628115, 3630.711389, 3857.064892, 4096.000000,
  },
};

static const double interp_dgrid_curv[3][65] = {
  {
      16.000000, 15.962891, 15.925174, 15.886888, 15.848074, 15.808770,
      15.769015, 15.728850, 15.688313, 15.647445, 15.606284, 15.564870,
      15.525918, 15.483820, 15.373330, 15.126844, 14.637442, 14.184387,
      13.560070, 12.880717, 12.165995, 11.378144, 10.438769, 9.130790,
      7.487633,  5.688649,  4.267515,  3.196300,  2.434201,  1.834064,
      1.369920,  1.035921,  0.775279,  0.574895,  0.427232,  0.314123,
      0.233236,  0.171440,  0.128188,  0.092762,  0.067569,  0.049324,
      0.036330,  0.027008,  0.019853,  0.015539,  0.011093,  0.008733,
      0.007624,  0.008105,  0.005427,  0.004065,  0.003427,  0.002848,
      0.002328,  0.001865,  0.001457,  0.001103,  0.000801,  0.000550,
      0.000348,  0.000193,  0.000085,  0.000021,  0.000000,
  },
  {
      16.000000, 15.996116, 15.984769, 15.966413, 15.941505, 15.910501,
      15.873856, 15.832026, 15.785466, 15.734633, 15.679981, 15.621967,
      15.560961, 15.460157, 15.288367, 15.052462, 14.466922, 13.921212,
      13.073692, 12.222005, 11.237799, 9.985848,  8.898823,  7.423519,
      5.995325,  4.773152,  3.744032,  2.938217,  2.294526,  1.762412,
      1.327145,  1.020728,  0.765535,  0.570548,  0.425833,  0.313825,
      0.232959,  0.171324,  0.128174,  0.092750,  0.067558,  0.049319,
      0.036330,  0.027008,  0.019853,  0.015539,  0.011093,  0.008733,
      0.007624,  0.008105,  0.005427,  0.004065,  0.003427,  0.002848,
      0.002328,  0.001865,  0.001457,  0.001103,  0.000801,  0.000550,
      0.000348,  0.000193,  0.000085,  0.000021,  -0.000000,
  },
};

void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr,
                          double *rate_f, double *distbysse_f) {
  const double x_start = -15.5;
  const double x_end = 16.5;
  const double x_step = 0.5;
  const double epsilon = 1e-6;
  const int rcat = bsize_curvfit_model_cat_lookup[bsize];
  const int dcat = sse_norm_curvfit_model_cat_lookup(sse_norm);
  (void)x_end;

  xqr = AOMMAX(xqr, x_start + x_step + epsilon);
  xqr = AOMMIN(xqr, x_end - x_step - epsilon);
  const double x = (xqr - x_start) / x_step;
  const int xi = (int)floor(x);
  const double xo = x - xi;

  assert(xi > 0);

  const double *prate = &interp_rgrid_curv[rcat][(xi - 1)];
  *rate_f = interp_cubic(prate, xo);
  const double *pdist = &interp_dgrid_curv[dcat][(xi - 1)];
  *distbysse_f = interp_cubic(pdist, xo);
}

static void get_entropy_contexts_plane(BLOCK_SIZE plane_bsize,
                                       const struct macroblockd_plane *pd,
                                       ENTROPY_CONTEXT t_above[MAX_MIB_SIZE],
                                       ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) {
  const int num_4x4_w = mi_size_wide[plane_bsize];
  const int num_4x4_h = mi_size_high[plane_bsize];
  const ENTROPY_CONTEXT *const above = pd->above_entropy_context;
  const ENTROPY_CONTEXT *const left = pd->left_entropy_context;

  memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
  memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
}

void av1_get_entropy_contexts(BLOCK_SIZE plane_bsize,
                              const struct macroblockd_plane *pd,
                              ENTROPY_CONTEXT t_above[MAX_MIB_SIZE],
                              ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) {
  assert(plane_bsize < BLOCK_SIZES_ALL);
  get_entropy_contexts_plane(plane_bsize, pd, t_above, t_left);
}

// Special clamping used in the encoder when calculating a prediction
//
// Logically, all pixel fetches used for prediction are clamped against the
// edges of the frame. But doing this directly is slow, so instead we allocate
// a finite border around the frame and fill it with copies of the outermost
// pixels.
//
// Since this border is finite, we need to clamp the motion vector before
// prediction in order to avoid out-of-bounds reads. At the same time, this
// clamp must not change the prediction result.
//
// We can balance both of these concerns by calculating how far we would have
// to go in each direction before the extended prediction region (the current
// block + AOM_INTERP_EXTEND many pixels around the block) would be mapped
// so that it touches the frame only at one row or column. This is a special
// point because any more extreme MV will always lead to the same prediction.
// So it is safe to clamp at that point.
//
// In the worst case, this requires a border of
//   max_block_width + 2*AOM_INTERP_EXTEND = 128 + 2*4 = 136 pixels
// around the frame edges.
static INLINE void enc_clamp_mv(const AV1_COMMON *cm, const MACROBLOCKD *xd,
                                MV *mv) {
  int bw = xd->width << MI_SIZE_LOG2;
  int bh = xd->height << MI_SIZE_LOG2;

  int px_to_left_edge = xd->mi_col << MI_SIZE_LOG2;
  int px_to_right_edge = (cm->mi_params.mi_cols - xd->mi_col) << MI_SIZE_LOG2;
  int px_to_top_edge = xd->mi_row << MI_SIZE_LOG2;
  int px_to_bottom_edge = (cm->mi_params.mi_rows - xd->mi_row) << MI_SIZE_LOG2;

  const SubpelMvLimits mv_limits = {
    .col_min = -GET_MV_SUBPEL(px_to_left_edge + bw + AOM_INTERP_EXTEND),
    .col_max = GET_MV_SUBPEL(px_to_right_edge + AOM_INTERP_EXTEND),
    .row_min = -GET_MV_SUBPEL(px_to_top_edge + bh + AOM_INTERP_EXTEND),
    .row_max = GET_MV_SUBPEL(px_to_bottom_edge + AOM_INTERP_EXTEND)
  };
  clamp_mv(mv, &mv_limits);
}

void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
                 int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) {
  const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME };
  const int_mv ref_mv =
      av1_get_ref_mv_from_stack(0, ref_frames, 0, &x->mbmi_ext);
  const int_mv ref_mv1 =
      av1_get_ref_mv_from_stack(0, ref_frames, 1, &x->mbmi_ext);
  MV pred_mv[MAX_MV_REF_CANDIDATES + 1];
  int num_mv_refs = 0;
  pred_mv[num_mv_refs++] = ref_mv.as_mv;
  if (ref_mv.as_int != ref_mv1.as_int) {
    pred_mv[num_mv_refs++] = ref_mv1.as_mv;
  }

  assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));

  const uint8_t *const src_y_ptr = x->plane[0].src.buf;
  int zero_seen = 0;
  int best_sad = INT_MAX;
  int max_mv = 0;
  // Get the sad for each candidate reference mv.
  for (int i = 0; i < num_mv_refs; ++i) {
    MV *this_mv = &pred_mv[i];
    enc_clamp_mv(&cpi->common, &x->e_mbd, this_mv);

    const int fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
    const int fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
    max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);

    if (fp_row == 0 && fp_col == 0 && zero_seen) continue;
    zero_seen |= (fp_row == 0 && fp_col == 0);

    const uint8_t *const ref_y_ptr =
        &ref_y_buffer[ref_y_stride * fp_row + fp_col];
    // Find sad for current vector.
    const int this_sad = cpi->ppi->fn_ptr[block_size].sdf(
        src_y_ptr, x->plane[0].src.stride, ref_y_ptr, ref_y_stride);
    // Note if it is the best so far.
    if (this_sad < best_sad) {
      best_sad = this_sad;
    }
    if (i == 0)
      x->pred_mv0_sad[ref_frame] = this_sad;
    else if (i == 1)
      x->pred_mv1_sad[ref_frame] = this_sad;
  }

  // Note the index of the mv that worked best in the reference list.
  x->max_mv_context[ref_frame] = max_mv;
  x->pred_mv_sad[ref_frame] = best_sad;
}

void av1_setup_pred_block(const MACROBLOCKD *xd,
                          struct buf_2d dst[MAX_MB_PLANE],
                          const YV12_BUFFER_CONFIG *src,
                          const struct scale_factors *scale,
                          const struct scale_factors *scale_uv,
                          const int num_planes) {
  dst[0].buf = src->y_buffer;
  dst[0].stride = src->y_stride;
  dst[1].buf = src->u_buffer;
  dst[2].buf = src->v_buffer;
  dst[1].stride = dst[2].stride = src->uv_stride;

  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  for (int i = 0; i < num_planes; ++i) {
    setup_pred_plane(dst + i, xd->mi[0]->bsize, dst[i].buf,
                     i ? src->uv_crop_width : src->y_crop_width,
                     i ? src->uv_crop_height : src->y_crop_height,
                     dst[i].stride, mi_row, mi_col, i ? scale_uv : scale,
                     xd->plane[i].subsampling_x, xd->plane[i].subsampling_y);
  }
}

YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi,
                                             int ref_frame) {
  assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME);
  RefCntBuffer *const scaled_buf = cpi->scaled_ref_buf[ref_frame - 1];
  const RefCntBuffer *const ref_buf =
      get_ref_frame_buf(&cpi->common, ref_frame);
  return (scaled_buf != ref_buf && scaled_buf != NULL) ? &scaled_buf->buf
                                                       : NULL;
}

int av1_get_switchable_rate(const MACROBLOCK *x, const MACROBLOCKD *xd,
                            InterpFilter interp_filter, int dual_filter) {
  if (interp_filter == SWITCHABLE) {
    const MB_MODE_INFO *const mbmi = xd->mi[0];
    int inter_filter_cost = 0;
    for (int dir = 0; dir < 2; ++dir) {
      if (dir && !dual_filter) break;
      const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
      const InterpFilter filter =
          av1_extract_interp_filter(mbmi->interp_filters, dir);
      inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx][filter];
    }
    return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost;
  } else {
    return 0;
  }
}

void av1_set_rd_speed_thresholds(AV1_COMP *cpi) {
  RD_OPT *const rd = &cpi->rd;

  // Set baseline threshold values.
  av1_zero(rd->thresh_mult);

  rd->thresh_mult[THR_NEARESTMV] = 300;
  rd->thresh_mult[THR_NEARESTL2] = 300;
  rd->thresh_mult[THR_NEARESTL3] = 300;
  rd->thresh_mult[THR_NEARESTB] = 300;
  rd->thresh_mult[THR_NEARESTA2] = 300;
  rd->thresh_mult[THR_NEARESTA] = 300;
  rd->thresh_mult[THR_NEARESTG] = 300;

  rd->thresh_mult[THR_NEWMV] = 1000;
  rd->thresh_mult[THR_NEWL2] = 1000;
  rd->thresh_mult[THR_NEWL3] = 1000;
  rd->thresh_mult[THR_NEWB] = 1000;
  rd->thresh_mult[THR_NEWA2] = 1100;
  rd->thresh_mult[THR_NEWA] = 1000;
  rd->thresh_mult[THR_NEWG] = 1000;

  rd->thresh_mult[THR_NEARMV] = 1000;
  rd->thresh_mult[THR_NEARL2] = 1000;
  rd->thresh_mult[THR_NEARL3] = 1000;
  rd->thresh_mult[THR_NEARB] = 1000;
  rd->thresh_mult[THR_NEARA2] = 1000;
  rd->thresh_mult[THR_NEARA] = 1000;
  rd->thresh_mult[THR_NEARG] = 1000;

  rd->thresh_mult[THR_GLOBALMV] = 2200;
  rd->thresh_mult[THR_GLOBALL2] = 2000;
  rd->thresh_mult[THR_GLOBALL3] = 2000;
  rd->thresh_mult[THR_GLOBALB] = 2400;
  rd->thresh_mult[THR_GLOBALA2] = 2000;
  rd->thresh_mult[THR_GLOBALG] = 2000;
  rd->thresh_mult[THR_GLOBALA] = 2400;

  rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] = 1100;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] = 1000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] = 800;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] = 900;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] = 1000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] = 1000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] = 1000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] = 1000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA2] = 1000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A2] = 1000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A2] = 1000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA2] = 1000;

  rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL2] = 2000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL3] = 2000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTLG] = 2000;
  rd->thresh_mult[THR_COMP_NEAREST_NEARESTBA] = 2000;

  rd->thresh_mult[THR_COMP_NEAR_NEARLA] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWLA] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTLA] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWLA] = 1530;
  rd->thresh_mult[THR_COMP_NEW_NEARLA] = 1870;
  rd->thresh_mult[THR_COMP_NEW_NEWLA] = 2400;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA] = 2750;

  rd->thresh_mult[THR_COMP_NEAR_NEARL2A] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWL2A] = 1870;
  rd->thresh_mult[THR_COMP_NEW_NEARL2A] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWL2A] = 1800;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A] = 2500;

  rd->thresh_mult[THR_COMP_NEAR_NEARL3A] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWL3A] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEARL3A] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWL3A] = 2000;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A] = 3000;

  rd->thresh_mult[THR_COMP_NEAR_NEARGA] = 1320;
  rd->thresh_mult[THR_COMP_NEAREST_NEWGA] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTGA] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWGA] = 2040;
  rd->thresh_mult[THR_COMP_NEW_NEARGA] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWGA] = 2000;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA] = 2250;

  rd->thresh_mult[THR_COMP_NEAR_NEARLB] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWLB] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTLB] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWLB] = 1360;
  rd->thresh_mult[THR_COMP_NEW_NEARLB] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWLB] = 2400;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLB] = 2250;

  rd->thresh_mult[THR_COMP_NEAR_NEARL2B] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWL2B] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEARL2B] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWL2B] = 2000;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2B] = 2500;

  rd->thresh_mult[THR_COMP_NEAR_NEARL3B] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWL3B] = 1870;
  rd->thresh_mult[THR_COMP_NEW_NEARL3B] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWL3B] = 2000;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3B] = 2500;

  rd->thresh_mult[THR_COMP_NEAR_NEARGB] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWGB] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTGB] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWGB] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEARGB] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWGB] = 2000;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGB] = 2500;

  rd->thresh_mult[THR_COMP_NEAR_NEARLA2] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWLA2] = 1800;
  rd->thresh_mult[THR_COMP_NEW_NEARESTLA2] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWLA2] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEARLA2] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWLA2] = 2000;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA2] = 2500;

  rd->thresh_mult[THR_COMP_NEAR_NEARL2A2] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWL2A2] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTL2A2] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWL2A2] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEARL2A2] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWL2A2] = 2000;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A2] = 2500;

  rd->thresh_mult[THR_COMP_NEAR_NEARL3A2] = 1440;
  rd->thresh_mult[THR_COMP_NEAREST_NEWL3A2] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTL3A2] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWL3A2] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEARL3A2] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWL3A2] = 2000;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A2] = 2500;

  rd->thresh_mult[THR_COMP_NEAR_NEARGA2] = 1200;
  rd->thresh_mult[THR_COMP_NEAREST_NEWGA2] = 1500;
  rd->thresh_mult[THR_COMP_NEW_NEARESTGA2] = 1500;
  rd->thresh_mult[THR_COMP_NEAR_NEWGA2] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEARGA2] = 1700;
  rd->thresh_mult[THR_COMP_NEW_NEWGA2] = 2000;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA2] = 2750;

  rd->thresh_mult[THR_COMP_NEAR_NEARLL2] = 1600;
  rd->thresh_mult[THR_COMP_NEAREST_NEWLL2] = 2000;
  rd->thresh_mult[THR_COMP_NEW_NEARESTLL2] = 2000;
  rd->thresh_mult[THR_COMP_NEAR_NEWLL2] = 2640;
  rd->thresh_mult[THR_COMP_NEW_NEARLL2] = 2200;
  rd->thresh_mult[THR_COMP_NEW_NEWLL2] = 2400;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL2] = 3200;

  rd->thresh_mult[THR_COMP_NEAR_NEARLL3] = 1600;
  rd->thresh_mult[THR_COMP_NEAREST_NEWLL3] = 2000;
  rd->thresh_mult[THR_COMP_NEW_NEARESTLL3] = 1800;
  rd->thresh_mult[THR_COMP_NEAR_NEWLL3] = 2200;
  rd->thresh_mult[THR_COMP_NEW_NEARLL3] = 2200;
  rd->thresh_mult[THR_COMP_NEW_NEWLL3] = 2400;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL3] = 3200;

  rd->thresh_mult[THR_COMP_NEAR_NEARLG] = 1760;
  rd->thresh_mult[THR_COMP_NEAREST_NEWLG] = 2400;
  rd->thresh_mult[THR_COMP_NEW_NEARESTLG] = 2000;
  rd->thresh_mult[THR_COMP_NEAR_NEWLG] = 1760;
  rd->thresh_mult[THR_COMP_NEW_NEARLG] = 2640;
  rd->thresh_mult[THR_COMP_NEW_NEWLG] = 2400;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLG] = 3200;

  rd->thresh_mult[THR_COMP_NEAR_NEARBA] = 1600;
  rd->thresh_mult[THR_COMP_NEAREST_NEWBA] = 2000;
  rd->thresh_mult[THR_COMP_NEW_NEARESTBA] = 2000;
  rd->thresh_mult[THR_COMP_NEAR_NEWBA] = 2200;
  rd->thresh_mult[THR_COMP_NEW_NEARBA] = 1980;
  rd->thresh_mult[THR_COMP_NEW_NEWBA] = 2640;
  rd->thresh_mult[THR_COMP_GLOBAL_GLOBALBA] = 3200;

  rd->thresh_mult[THR_DC] = 1000;
  rd->thresh_mult[THR_PAETH] = 1000;
  rd->thresh_mult[THR_SMOOTH] = 2200;
  rd->thresh_mult[THR_SMOOTH_V] = 2000;
  rd->thresh_mult[THR_SMOOTH_H] = 2000;
  rd->thresh_mult[THR_H_PRED] = 2000;
  rd->thresh_mult[THR_V_PRED] = 1800;
  rd->thresh_mult[THR_D135_PRED] = 2500;
  rd->thresh_mult[THR_D203_PRED] = 2000;
  rd->thresh_mult[THR_D157_PRED] = 2500;
  rd->thresh_mult[THR_D67_PRED] = 2000;
  rd->thresh_mult[THR_D113_PRED] = 2500;
  rd->thresh_mult[THR_D45_PRED] = 2500;
}

static INLINE void update_thr_fact(int (*factor_buf)[MAX_MODES],
                                   THR_MODES best_mode_index,
                                   THR_MODES mode_start, THR_MODES mode_end,
                                   BLOCK_SIZE min_size, BLOCK_SIZE max_size,
                                   int max_rd_thresh_factor) {
  for (THR_MODES mode = mode_start; mode < mode_end; ++mode) {
    for (BLOCK_SIZE bs = min_size; bs <= max_size; ++bs) {
      int *const fact = &factor_buf[bs][mode];
      if (mode == best_mode_index) {
        *fact -= (*fact >> RD_THRESH_LOG_DEC_FACTOR);
      } else {
        *fact = AOMMIN(*fact + RD_THRESH_INC, max_rd_thresh_factor);
      }
    }
  }
}

void av1_update_rd_thresh_fact(
    const AV1_COMMON *const cm, int (*factor_buf)[MAX_MODES],
    int use_adaptive_rd_thresh, BLOCK_SIZE bsize, THR_MODES best_mode_index,
    THR_MODES inter_mode_start, THR_MODES inter_mode_end,
    THR_MODES intra_mode_start, THR_MODES intra_mode_end) {
  assert(use_adaptive_rd_thresh > 0);
  const int max_rd_thresh_factor = use_adaptive_rd_thresh * RD_THRESH_MAX_FACT;

  const int bsize_is_1_to_4 = bsize > cm->seq_params->sb_size;
  BLOCK_SIZE min_size, max_size;
  if (bsize_is_1_to_4) {
    // This part handles block sizes with 1:4 and 4:1 aspect ratios
    // TODO(any): Experiment with threshold update for parent/child blocks
    min_size = bsize;
    max_size = bsize;
  } else {
    min_size = AOMMAX(bsize - 2, BLOCK_4X4);
    max_size = AOMMIN(bsize + 2, (int)cm->seq_params->sb_size);
  }

  update_thr_fact(factor_buf, best_mode_index, inter_mode_start, inter_mode_end,
                  min_size, max_size, max_rd_thresh_factor);
  update_thr_fact(factor_buf, best_mode_index, intra_mode_start, intra_mode_end,
                  min_size, max_size, max_rd_thresh_factor);
}

int av1_get_intra_cost_penalty(int qindex, int qdelta,
                               aom_bit_depth_t bit_depth) {
  const int q = av1_dc_quant_QTX(qindex, qdelta, bit_depth);
  switch (bit_depth) {
    case AOM_BITS_8: return 20 * q;
    case AOM_BITS_10: return 5 * q;
    case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2);
    default:
      assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
      return -1;
  }
}