aboutsummaryrefslogtreecommitdiff
path: root/src/arm/windows/init-by-logical-sys-info.c
blob: f08801190764d11ef2af96c4ab5fd466027ce7a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <errno.h>
#include <sys/types.h>

#include <cpuinfo.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>

#include "windows-arm-init.h"

#define MAX_NR_OF_CACHES	(cpuinfo_cache_level_max - 1)

/* Call chain:
 * cpu_info_init_by_logical_sys_info
 * 		read_packages_for_processors
 * 		read_cores_for_processors
 * 		read_caches_for_processors
 * 			read_all_logical_processor_info_of_relation
 * 				parse_relation_processor_info
 * 					store_package_info_per_processor
 * 					store_core_info_per_processor
 * 				parse_relation_cache_info
 * 					store_cache_info_per_processor
 */

static uint32_t count_logical_processors(
	const uint32_t max_group_count,
	uint32_t* global_proc_index_per_group);

static uint32_t read_packages_for_processors(
	struct cpuinfo_processor* processors,
	const uint32_t number_of_processors,
	const uint32_t* global_proc_index_per_group,
	const struct woa_chip_info *chip_info);

static uint32_t read_cores_for_processors(
	struct cpuinfo_processor* processors,
	const uint32_t number_of_processors,
	const uint32_t* global_proc_index_per_group,
	struct cpuinfo_core* cores,
	const struct woa_chip_info *chip_info);

static uint32_t read_caches_for_processors(
	struct cpuinfo_processor *processors,
	const uint32_t number_of_processors,
	struct cpuinfo_cache *caches,
	uint32_t* numbers_of_caches,
	const uint32_t* global_proc_index_per_group,
	const struct woa_chip_info *chip_info);

static uint32_t read_all_logical_processor_info_of_relation(
	LOGICAL_PROCESSOR_RELATIONSHIP info_type,
	struct cpuinfo_processor* processors,
	const uint32_t number_of_processors,
	struct cpuinfo_cache* caches,
	uint32_t* numbers_of_caches,
	struct cpuinfo_core* cores,
	const uint32_t* global_proc_index_per_group,
	const struct woa_chip_info *chip_info);

static bool parse_relation_processor_info(
	struct cpuinfo_processor* processors,
	uint32_t nr_of_processors,
	const uint32_t* global_proc_index_per_group,
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
	const uint32_t info_id,
	struct cpuinfo_core* cores,
	const struct woa_chip_info *chip_info);

static bool parse_relation_cache_info(
	struct cpuinfo_processor* processors,
	struct cpuinfo_cache* caches,
	uint32_t* numbers_of_caches,
	const uint32_t* global_proc_index_per_group,
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info);

static void store_package_info_per_processor(
	struct cpuinfo_processor* processors,
	const uint32_t processor_global_index,
	const uint32_t package_id,
	const uint32_t group_id,
	const uint32_t processor_id_in_group);

static void store_core_info_per_processor(
	struct cpuinfo_processor* processors,
	const uint32_t processor_global_index,
	const uint32_t core_id,
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info,
	struct cpuinfo_core* cores,
	const struct woa_chip_info *chip_info);

static void store_cache_info_per_processor(
	struct cpuinfo_processor* processors,
	const uint32_t processor_global_index,
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
	struct cpuinfo_cache* current_cache);

static bool connect_packages_cores_clusters_by_processors(
	struct cpuinfo_processor* processors,
	const uint32_t nr_of_processors,
	struct cpuinfo_package* packages,
	const uint32_t nr_of_packages,
	struct cpuinfo_cluster* clusters,
	struct cpuinfo_core* cores,
	const uint32_t nr_of_cores,
	const struct woa_chip_info* chip_info,
	enum cpuinfo_vendor vendor);

static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity);


bool cpu_info_init_by_logical_sys_info(
	const struct woa_chip_info *chip_info,
	const enum cpuinfo_vendor vendor)
{
	struct cpuinfo_processor* processors = NULL;
	struct cpuinfo_package* packages = NULL;
	struct cpuinfo_cluster* clusters = NULL;
	struct cpuinfo_core* cores = NULL;
	struct cpuinfo_cache* caches = NULL;
	struct cpuinfo_uarch_info* uarchs = NULL;

	uint32_t nr_of_packages = 0;
	uint32_t nr_of_cores = 0;
	uint32_t nr_of_all_caches = 0;
	uint32_t numbers_of_caches[MAX_NR_OF_CACHES] = {0};
	
	uint32_t nr_of_uarchs = 0;
	bool result = false;
	
	HANDLE heap = GetProcessHeap();

	/* 1. Count available logical processor groups and processors */
	const uint32_t max_group_count = (uint32_t) GetMaximumProcessorGroupCount();
	cpuinfo_log_debug("detected %"PRIu32" processor group(s)", max_group_count);
	/* We need to store the absolute processor ID offsets for every groups, because
	 *  1. We can't assume every processor groups include the same number of
	 *     logical processors.
	 *  2. Every processor groups know its group number and processor IDs within
	 *     the group, but not the global processor IDs.
	 *  3. We need to list every logical processors by global IDs.
	*/
	uint32_t* global_proc_index_per_group =
		(uint32_t*) HeapAlloc(heap, 0, max_group_count * sizeof(uint32_t));
	if (global_proc_index_per_group == NULL) {
		cpuinfo_log_error(
			"failed to allocate %zu bytes for descriptions of %"PRIu32" processor groups",
			max_group_count * sizeof(struct cpuinfo_processor), max_group_count);
		goto clean_up;
	}
	
	uint32_t nr_of_processors =
		count_logical_processors(max_group_count, global_proc_index_per_group);
	processors = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_processors * sizeof(struct cpuinfo_processor));
	if (processors == NULL) {
		cpuinfo_log_error(
			"failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
			nr_of_processors * sizeof(struct cpuinfo_processor), nr_of_processors);
		goto clean_up;
	}

	/* 2. Read topology information via MSDN API: packages, cores and caches*/
	nr_of_packages = read_packages_for_processors(
						processors, nr_of_processors,
						global_proc_index_per_group,
						chip_info);
	if (!nr_of_packages) {
		cpuinfo_log_error("error in reading package information");
		goto clean_up;
	}
	cpuinfo_log_debug("detected %"PRIu32" processor package(s)", nr_of_packages);

	/* We need the EfficiencyClass to parse uarch from the core information,
	 * but we need to iterate first to count cores and allocate memory then
	 * we will iterate again to read and store data to cpuinfo_core structures.
	 */
	nr_of_cores = read_cores_for_processors(
					processors, nr_of_processors,
					global_proc_index_per_group, NULL,
					chip_info);
	if (!nr_of_cores) {
		cpuinfo_log_error("error in reading core information");
		goto clean_up;
	}
	cpuinfo_log_debug("detected %"PRIu32" processor core(s)", nr_of_cores);

	/* There is no API to read number of caches, so we need to iterate twice on caches:
		1. Count all type of caches -> allocate memory
		2. Read out cache data and store to allocated memory
	 */
	nr_of_all_caches = read_caches_for_processors(
						processors, nr_of_processors,
						caches, numbers_of_caches,
						global_proc_index_per_group, chip_info);
	if (!nr_of_all_caches) {
		cpuinfo_log_error("error in reading cache information");
		goto clean_up;
	}
	cpuinfo_log_debug("detected %"PRIu32" processor cache(s)", nr_of_all_caches);

	/* 3. Allocate memory for package, cluster, core and cache structures */
	packages = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_packages * sizeof(struct cpuinfo_package));
	if (packages == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages",
			nr_of_packages * sizeof(struct cpuinfo_package), nr_of_packages);
		goto clean_up;
	}

	/* We don't have cluster information so we explicitly set clusters to equal to cores. */
	clusters = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_cores * sizeof(struct cpuinfo_cluster));
	if (clusters == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
			nr_of_cores * sizeof(struct cpuinfo_cluster), nr_of_cores);
		goto clean_up;
	}

	cores = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_cores * sizeof(struct cpuinfo_core));
	if (cores == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
			nr_of_cores * sizeof(struct cpuinfo_core), nr_of_cores);
		goto clean_up;
	}

	/* We allocate one contiguous cache array for all caches, then use offsets per cache type. */
	caches = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_all_caches * sizeof(struct cpuinfo_cache));
	if (caches == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" caches",
			nr_of_all_caches * sizeof(struct cpuinfo_cache), nr_of_all_caches);
		goto clean_up;
	}

	/* 4.Read missing topology information that can't be saved without counted
	 *   allocate structures in the first round.
	 */
	nr_of_all_caches = read_caches_for_processors(
						processors, nr_of_processors,
						caches, numbers_of_caches, global_proc_index_per_group, chip_info);
	if (!nr_of_all_caches) {
		cpuinfo_log_error("error in reading cache information");
		goto clean_up;
	}

	nr_of_cores = read_cores_for_processors(
		processors, nr_of_processors,
		global_proc_index_per_group, cores,
		chip_info);
	if (!nr_of_cores) {
		cpuinfo_log_error("error in reading core information");
		goto clean_up;
	}

	/* 5. Now that we read out everything from the system we can, fill the package, cluster
	 *    and core structures respectively.
	 */
	result = connect_packages_cores_clusters_by_processors(
				processors, nr_of_processors,
				packages, nr_of_packages,
				clusters,
				cores, nr_of_cores,
				chip_info,
				vendor);
	if(!result) {
		cpuinfo_log_error("error in connecting information");
		goto clean_up;
	}

	/* 6. Count and store uarchs of cores, assuming same uarchs are neighbors */
	enum cpuinfo_uarch prev_uarch = cpuinfo_uarch_unknown;
	for (uint32_t i = 0; i < nr_of_cores; i++) {
		if (prev_uarch != cores[i].uarch) {
			nr_of_uarchs++;
			prev_uarch = cores[i].uarch;
		}
	}
	uarchs = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_uarchs * sizeof(struct cpuinfo_uarch_info));
	if (uarchs == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" uarchs",
			nr_of_uarchs * sizeof(struct cpuinfo_uarch_info), nr_of_uarchs);
		goto clean_up;
	}
	prev_uarch = cpuinfo_uarch_unknown;
	for (uint32_t i = 0, uarch_counter = 0; i < nr_of_cores; i++) {
		if (prev_uarch != cores[i].uarch) {
			prev_uarch = cores[i].uarch;
			uarchs[uarch_counter].uarch = cores[i].uarch;
			uarchs[uarch_counter].core_count = 1;
			uarchs[uarch_counter].processor_count = cores[i].processor_count;
			uarch_counter++;
		} else if (prev_uarch != cpuinfo_uarch_unknown) {
			uarchs[uarch_counter].core_count++;
			uarchs[uarch_counter].processor_count += cores[i].processor_count;
		}
	}

	/* 7. Commit changes */
	cpuinfo_processors = processors;
	cpuinfo_packages = packages;
	cpuinfo_clusters = clusters;
	cpuinfo_cores = cores;
	cpuinfo_uarchs = uarchs;

	cpuinfo_processors_count = nr_of_processors;
	cpuinfo_packages_count = nr_of_packages;
	cpuinfo_clusters_count = nr_of_cores;
	cpuinfo_cores_count = nr_of_cores;
	cpuinfo_uarchs_count = nr_of_uarchs;

	for (uint32_t i = 0; i < MAX_NR_OF_CACHES; i++) {
		cpuinfo_cache_count[i] = numbers_of_caches[i];
	}
	cpuinfo_cache[cpuinfo_cache_level_1i] = caches;
	cpuinfo_cache[cpuinfo_cache_level_1d] = cpuinfo_cache[cpuinfo_cache_level_1i] + cpuinfo_cache_count[cpuinfo_cache_level_1i];
	cpuinfo_cache[cpuinfo_cache_level_2]  = cpuinfo_cache[cpuinfo_cache_level_1d] + cpuinfo_cache_count[cpuinfo_cache_level_1d];
	cpuinfo_cache[cpuinfo_cache_level_3]  = cpuinfo_cache[cpuinfo_cache_level_2]  + cpuinfo_cache_count[cpuinfo_cache_level_2];
	cpuinfo_cache[cpuinfo_cache_level_4]  = cpuinfo_cache[cpuinfo_cache_level_3]  + cpuinfo_cache_count[cpuinfo_cache_level_3];
	cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]);

	result = true;
	MemoryBarrier();

	processors = NULL;
	packages = NULL;
	clusters = NULL;
	cores = NULL;
	caches = NULL;
	uarchs = NULL;

clean_up:
	/* The propagated pointers, shouldn't be freed, only in case of error
	 * and unfinished init.
	 */
	if (processors != NULL) {
		HeapFree(heap, 0, processors);
	}
	if (packages != NULL) {
		HeapFree(heap, 0, packages);
	}
	if (clusters != NULL) {
		HeapFree(heap, 0, clusters);
	}
	if (cores != NULL) {
		HeapFree(heap, 0, cores);
	}
	if (caches != NULL) {
		HeapFree(heap, 0, caches);
	}
	if (uarchs != NULL) {
		HeapFree(heap, 0, uarchs);
	}

	/* Free the locally used temporary pointers */
	HeapFree(heap, 0, global_proc_index_per_group);
	global_proc_index_per_group = NULL;
	return result;
}

static uint32_t count_logical_processors(
	const uint32_t max_group_count,
	uint32_t* global_proc_index_per_group)
{
	uint32_t nr_of_processors = 0;

	for (uint32_t i = 0; i < max_group_count; i++) {
		uint32_t nr_of_processors_per_group = GetMaximumProcessorCount((WORD) i);
		cpuinfo_log_debug("detected %"PRIu32" processor(s) in group %"PRIu32"",
			nr_of_processors_per_group, i);
		global_proc_index_per_group[i] = nr_of_processors;
		nr_of_processors += nr_of_processors_per_group;
	}
	return nr_of_processors;
}

static uint32_t read_packages_for_processors(
	struct cpuinfo_processor* processors,
	const uint32_t number_of_processors,
	const uint32_t* global_proc_index_per_group,
	const struct woa_chip_info *chip_info)
{
	return read_all_logical_processor_info_of_relation(
		RelationProcessorPackage,
		processors,
		number_of_processors,
		NULL,
		NULL,
		NULL,
		global_proc_index_per_group,
		chip_info);
}

uint32_t read_cores_for_processors(
	struct cpuinfo_processor* processors,
	const uint32_t number_of_processors,
	const uint32_t* global_proc_index_per_group,
	struct cpuinfo_core* cores,
	const struct woa_chip_info *chip_info)
{
	return read_all_logical_processor_info_of_relation(
		RelationProcessorCore,
		processors,
		number_of_processors,
		NULL,
		NULL,
		cores,
		global_proc_index_per_group,
		chip_info);
}

static uint32_t read_caches_for_processors(
	struct cpuinfo_processor* processors,
	const uint32_t number_of_processors,
	struct cpuinfo_cache* caches,
	uint32_t* numbers_of_caches,
	const uint32_t* global_proc_index_per_group,
	const struct woa_chip_info *chip_info)
{
	/* Reset processor start indexes */
	if (caches) {
		uint32_t cache_offset = 0;
		for (uint32_t i = 0; i < MAX_NR_OF_CACHES; i++) {
			for (uint32_t j = 0; j < numbers_of_caches[i]; j++) {
				caches[cache_offset + j].processor_start = UINT32_MAX;
			}
			cache_offset += numbers_of_caches[i];
		}
	}

	return read_all_logical_processor_info_of_relation(
		RelationCache,
		processors,
		number_of_processors,
		caches,
		numbers_of_caches,
		NULL,
		global_proc_index_per_group,
		chip_info);
}

static uint32_t read_all_logical_processor_info_of_relation(
	LOGICAL_PROCESSOR_RELATIONSHIP info_type,
	struct cpuinfo_processor* processors,
	const uint32_t number_of_processors,
	struct cpuinfo_cache* caches,
	uint32_t* numbers_of_caches,
	struct cpuinfo_core* cores,
	const uint32_t* global_proc_index_per_group,
	const struct woa_chip_info* chip_info)
{
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX infos = NULL;
	uint32_t nr_of_structs = 0;
	DWORD info_size = 0;
	bool result = false;
	HANDLE heap = GetProcessHeap();

	/* 1. Query the size of the information structure first */
	if (GetLogicalProcessorInformationEx(info_type, NULL, &info_size) == FALSE) {
		const DWORD last_error = GetLastError();
		if (last_error != ERROR_INSUFFICIENT_BUFFER) {
			cpuinfo_log_error(
				"failed to query size of processor %"PRIu32" information information: error %"PRIu32"",
				(uint32_t)info_type, (uint32_t) last_error);
			goto clean_up;
		}
	}
	/* 2. Allocate memory for the information structure */
	infos = HeapAlloc(heap, 0, info_size);
	if (infos == NULL) {
		cpuinfo_log_error("failed to allocate %"PRIu32" bytes for logical processor information",
			(uint32_t) info_size);
		goto clean_up;
	}
	/* 3. Read the information structure */
	if (GetLogicalProcessorInformationEx(info_type, infos, &info_size) == FALSE) {
		cpuinfo_log_error("failed to query processor %"PRIu32" information: error %"PRIu32"",
			(uint32_t)info_type, (uint32_t) GetLastError());
		goto clean_up;
	}

	/* 4. Parse the structure and store relevant data */
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info_end =
		(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) infos + info_size);
	for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = infos;
		info < info_end;
		info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) info + info->Size))
	{
		if (info->Relationship != info_type) {
			cpuinfo_log_warning(
				"unexpected processor info type (%"PRIu32") for processor information",
				(uint32_t) info->Relationship);
			continue;
		}

		const uint32_t info_id = nr_of_structs++;

		switch(info_type) {
			case RelationProcessorPackage:
				result = parse_relation_processor_info(
							processors,
							number_of_processors,
							global_proc_index_per_group,
							info,
							info_id,
							cores,
							chip_info);
			break;
			case RelationProcessorCore:
				result = parse_relation_processor_info(
							processors,
							number_of_processors,
							global_proc_index_per_group,
							info,
							info_id,
							cores,
							chip_info);
			break;
			case RelationCache:
				result = parse_relation_cache_info(
							processors,
							caches,
							numbers_of_caches,
							global_proc_index_per_group,
							info);
			break;
			default:
				cpuinfo_log_error(
					"unexpected processor info type (%"PRIu32") for processor information",
					(uint32_t) info->Relationship);
				result = false;
			break;
		}
		if (!result) {
			nr_of_structs = 0;
			goto clean_up;
		}
	}
clean_up:
	/* 5. Release dynamically allocated info structure. */
	HeapFree(heap, 0, infos);
	infos = NULL;
	return nr_of_structs;
}

static bool parse_relation_processor_info(
	struct cpuinfo_processor* processors,
	uint32_t nr_of_processors,
	const uint32_t* global_proc_index_per_group,
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
	const uint32_t info_id,
	struct cpuinfo_core* cores,
	const struct woa_chip_info *chip_info)
{
	for (uint32_t i = 0; i < info->Processor.GroupCount; i++) {
		const uint32_t group_id = info->Processor.GroupMask[i].Group;
		/* Bitmask representing processors in this group belonging to this package */
		KAFFINITY group_processors_mask = info->Processor.GroupMask[i].Mask;
		while (group_processors_mask != 0) {
			const uint32_t processor_id_in_group =
				low_index_from_kaffinity(group_processors_mask);
			const uint32_t processor_global_index =
				global_proc_index_per_group[group_id] + processor_id_in_group;

			if(processor_global_index >= nr_of_processors) {
				cpuinfo_log_error("unexpected processor index %"PRIu32"",
					processor_global_index);
				return false;
			}

			switch(info->Relationship) {
				case RelationProcessorPackage:
					store_package_info_per_processor(
						processors, processor_global_index, info_id,
						group_id, processor_id_in_group);
				break;
				case RelationProcessorCore:
					store_core_info_per_processor(
						processors, processor_global_index,
						info_id, info,
						cores, chip_info);
				break;
				default:
					cpuinfo_log_error(
						"unexpected processor info type (%"PRIu32") for processor information",
						(uint32_t) info->Relationship);
				break;
			}
			/* Clear the bits in affinity mask, lower the least set bit. */
			group_processors_mask &= (group_processors_mask - 1);
		}
	}
	return true;
}

static bool parse_relation_cache_info(
	struct cpuinfo_processor* processors,
	struct cpuinfo_cache* caches,
	uint32_t* numbers_of_caches,
	const uint32_t* global_proc_index_per_group,
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info)
{
	static uint32_t l1i_counter = 0;
	static uint32_t l1d_counter = 0;
	static uint32_t l2_counter = 0;
	static uint32_t l3_counter = 0;

	/* Count cache types for allocation at first. */
	if (caches == NULL) {
		switch(info->Cache.Level) {
			case 1:
				switch (info->Cache.Type) {
					case CacheInstruction:
						numbers_of_caches[cpuinfo_cache_level_1i]++;
					break;
					case CacheData:
						numbers_of_caches[cpuinfo_cache_level_1d]++;
					break;
					case CacheUnified:
					break;
					case CacheTrace:
					break;
					default:
					break;
				}
			break;
			case 2:
				numbers_of_caches[cpuinfo_cache_level_2]++;
			break;
			case 3:
				numbers_of_caches[cpuinfo_cache_level_3]++;
			break;
		}
		return true;
	}
	struct cpuinfo_cache* l1i_base = caches;
	struct cpuinfo_cache* l1d_base = l1i_base + numbers_of_caches[cpuinfo_cache_level_1i];
	struct cpuinfo_cache* l2_base  = l1d_base + numbers_of_caches[cpuinfo_cache_level_1d];
	struct cpuinfo_cache* l3_base  = l2_base  + numbers_of_caches[cpuinfo_cache_level_2];

	cpuinfo_log_debug(
		"info->Cache.GroupCount:%"PRIu32", info->Cache.GroupMask:%"PRIu32","
		"info->Cache.Level:%"PRIu32", info->Cache.Associativity:%"PRIu32","
		"info->Cache.LineSize:%"PRIu32","
		"info->Cache.CacheSize:%"PRIu32", info->Cache.Type:%"PRIu32"",
		info->Cache.GroupCount, (unsigned int)info->Cache.GroupMask.Mask,
		info->Cache.Level, info->Cache.Associativity, info->Cache.LineSize,
		info->Cache.CacheSize, info->Cache.Type);

	struct cpuinfo_cache* current_cache = NULL;
	switch (info->Cache.Level) {
		case 1:
			switch (info->Cache.Type) {
				case CacheInstruction:
					current_cache = l1i_base + l1i_counter;
					l1i_counter++;
				break;
				case CacheData:
					current_cache = l1d_base + l1d_counter;
					l1d_counter++;
				break;
				case CacheUnified:
				break;
				case CacheTrace:
				break;
				default:
				break;
			}
		break;
		case 2:
			current_cache = l2_base + l2_counter;
			l2_counter++;
		break;
		case 3:
			current_cache = l3_base + l3_counter;
			l3_counter++;
		break;
	}
	current_cache->size = info->Cache.CacheSize;
	current_cache->line_size = info->Cache.LineSize;
	current_cache->associativity = info->Cache.Associativity;
	/* We don't have partition and set information of caches on Windows,
	 * so we set partitions to 1 and calculate the expected sets.
	 */
	current_cache->partitions = 1;
	current_cache->sets =
		current_cache->size / current_cache->line_size / current_cache->associativity;
	if (info->Cache.Type == CacheUnified) {
		current_cache->flags = CPUINFO_CACHE_UNIFIED;
	}

	for (uint32_t i = 0; i <= info->Cache.GroupCount; i++) {
	/* Zero GroupCount is valid, GroupMask still can store bits set. */
		const uint32_t group_id = info->Cache.GroupMasks[i].Group;
		/* Bitmask representing processors in this group belonging to this package */
		KAFFINITY group_processors_mask = info->Cache.GroupMasks[i].Mask;
		while (group_processors_mask != 0) {
			const uint32_t processor_id_in_group =
				low_index_from_kaffinity(group_processors_mask);
			const uint32_t processor_global_index =
				global_proc_index_per_group[group_id] + processor_id_in_group;

			store_cache_info_per_processor(
				processors, processor_global_index,
				info, current_cache);

			/* Clear the bits in affinity mask, lower the least set bit. */
			group_processors_mask &= (group_processors_mask - 1);
		}
	}
	return true;
}

static void store_package_info_per_processor(
	struct cpuinfo_processor* processors,
	const uint32_t processor_global_index,
	const uint32_t package_id,
	const uint32_t group_id,
	const uint32_t processor_id_in_group)
{
	processors[processor_global_index].windows_group_id =
		(uint16_t) group_id;
	processors[processor_global_index].windows_processor_id =
		(uint16_t) processor_id_in_group;

	/* As we're counting the number of packages now, we haven't allocated memory for
	 * cpuinfo_packages yet, so we only set the package pointer's offset now.
	 */
	processors[processor_global_index].package =
		(const struct cpuinfo_package*) NULL + package_id;
}

void store_core_info_per_processor(
	struct cpuinfo_processor* processors,
	const uint32_t processor_global_index,
	const uint32_t core_id,
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info,
	struct cpuinfo_core* cores,
	const struct woa_chip_info *chip_info)
{
	if (cores) {
		processors[processor_global_index].core = cores + core_id;
		cores[core_id].core_id = core_id;
		get_core_uarch_for_efficiency(
			chip_info->chip_name, core_info->Processor.EfficiencyClass,
			&(cores[core_id].uarch), &(cores[core_id].frequency));

		/* We don't have cluster information, so we handle it as
		 * fixed 1 to (cluster / cores).
		 * Set the cluster offset ID now, as soon as we have the
		 * cluster base address, we'll set the absolute address.
		 */
		processors[processor_global_index].cluster =
			(const struct cpuinfo_cluster*) NULL + core_id;
	}
}

static void store_cache_info_per_processor(
	struct cpuinfo_processor* processors,
	const uint32_t processor_global_index,
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
	struct cpuinfo_cache* current_cache)
{
	if (current_cache->processor_start > processor_global_index) {
		current_cache->processor_start = processor_global_index;
	}
	current_cache->processor_count++;

	switch(info->Cache.Level) {
		case 1:
			switch (info->Cache.Type) {
				case CacheInstruction:
					processors[processor_global_index].cache.l1i = current_cache;
				break;
				case CacheData:
					processors[processor_global_index].cache.l1d = current_cache;
				break;
				case CacheUnified:
				break;
				case CacheTrace:
				break;
				default:
				break;
			}
		break;
		case 2:
			processors[processor_global_index].cache.l2 = current_cache;
		break;
		case 3:
			processors[processor_global_index].cache.l3 = current_cache;
		break;
	}
}

static bool connect_packages_cores_clusters_by_processors(
	struct cpuinfo_processor* processors,
	const uint32_t nr_of_processors,
	struct cpuinfo_package* packages,
	const uint32_t nr_of_packages,
	struct cpuinfo_cluster* clusters,
	struct cpuinfo_core* cores,
	const uint32_t nr_of_cores,
	const struct woa_chip_info* chip_info,
	enum cpuinfo_vendor vendor)
{
	/* Adjust core and package pointers for all logical processors. */
	for (uint32_t i = nr_of_processors; i != 0; i--) {
		const uint32_t processor_id = i - 1;
		struct cpuinfo_processor* processor = processors + processor_id;

		struct cpuinfo_core* core = (struct cpuinfo_core*)processor->core;

		/* We stored the offset of pointers when we haven't allocated memory
		 * for packages and clusters, so now add offsets to base addresses.
		 */
		struct cpuinfo_package* package =
			(struct cpuinfo_package*) ((uintptr_t) packages + (uintptr_t) processor->package);
		if (package < packages ||
			package >= (packages + nr_of_packages)) {
			cpuinfo_log_error("invalid package indexing");
			return false;
		}
		processor->package = package;

		struct cpuinfo_cluster* cluster =
			(struct cpuinfo_cluster*) ((uintptr_t) clusters + (uintptr_t) processor->cluster);
		if (cluster < clusters ||
			cluster >= (clusters + nr_of_cores)) {
			cpuinfo_log_error("invalid cluster indexing");
			return false;
		}
		processor->cluster = cluster;

		if (chip_info) {
			strncpy_s(package->name, CPUINFO_PACKAGE_NAME_MAX, chip_info->chip_name_string,
				strnlen(chip_info->chip_name_string, CPUINFO_PACKAGE_NAME_MAX));
		}

		/* Set start indexes and counts per packages / clusters / cores - going backwards */

		/* This can be overwritten by lower-index processors on the same package. */
		package->processor_start = processor_id;
		package->processor_count++;

		/* This can be overwritten by lower-index processors on the same cluster. */
		cluster->processor_start = processor_id;
		cluster->processor_count++;

		/* This can be overwritten by lower-index processors on the same core. */
		core->processor_start = processor_id;
		core->processor_count++;
	}
	/* Fill cores */
	for (uint32_t i = nr_of_cores; i != 0; i--) {
		const uint32_t global_core_id = i - 1;
		struct cpuinfo_core* core = cores + global_core_id;
		const struct cpuinfo_processor* processor = processors + core->processor_start;
		struct cpuinfo_package* package = (struct cpuinfo_package*) processor->package;
		struct cpuinfo_cluster* cluster = (struct cpuinfo_cluster*) processor->cluster;

		core->package = package;
		core->cluster = cluster;
		core->vendor = vendor;

		/* This can be overwritten by lower-index cores on the same cluster/package. */
		cluster->core_start = global_core_id;
		cluster->core_count++;
		package->core_start = global_core_id;
		package->core_count++;
		package->cluster_start = global_core_id;
		package->cluster_count = package->core_count;

		cluster->package = package;
		cluster->vendor = cores[cluster->core_start].vendor;
		cluster->uarch = cores[cluster->core_start].uarch;
		cluster->frequency = cores[cluster->core_start].frequency;
	}
	return true;
}

static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity) {
	unsigned long index;
	_BitScanForward64(&index, (unsigned __int64) kaffinity);
	return (uint32_t) index;
}