aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/math_brute_force/i_unary_float.cpp
blob: c803aa325288d0f1dd95f858be04751448762fdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

#include "function_list.h"
#include "test_functions.h"
#include "utility.h"

#include <cstring>

static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
                       cl_program *p, bool relaxedMode)
{
    const char *c[] = { "__kernel void math_kernel",
                        sizeNames[vectorSize],
                        "( __global int",
                        sizeNames[vectorSize],
                        "* out, __global float",
                        sizeNames[vectorSize],
                        "* in)\n"
                        "{\n"
                        "   size_t i = get_global_id(0);\n"
                        "   out[i] = ",
                        name,
                        "( in[i] );\n"
                        "}\n" };

    const char *c3[] = {
        "__kernel void math_kernel",
        sizeNames[vectorSize],
        "( __global int* out, __global float* in)\n"
        "{\n"
        "   size_t i = get_global_id(0);\n"
        "   if( i + 1 < get_global_size(0) )\n"
        "   {\n"
        "       float3 f0 = vload3( 0, in + 3 * i );\n"
        "       int3 i0 = ",
        name,
        "( f0 );\n"
        "       vstore3( i0, 0, out + 3*i );\n"
        "   }\n"
        "   else\n"
        "   {\n"
        "       size_t parity = i & 1;   // Figure out how many elements are "
        "left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
        "buffer size \n"
        "       float3 f0;\n"
        "       switch( parity )\n"
        "       {\n"
        "           case 1:\n"
        "               f0 = (float3)( in[3*i], NAN, NAN ); \n"
        "               break;\n"
        "           case 0:\n"
        "               f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
        "               break;\n"
        "       }\n"
        "       int3 i0 = ",
        name,
        "( f0 );\n"
        "       switch( parity )\n"
        "       {\n"
        "           case 0:\n"
        "               out[3*i+1] = i0.y; \n"
        "               // fall through\n"
        "           case 1:\n"
        "               out[3*i] = i0.x; \n"
        "               break;\n"
        "       }\n"
        "   }\n"
        "}\n"
    };

    const char **kern = c;
    size_t kernSize = sizeof(c) / sizeof(c[0]);

    if (sizeValues[vectorSize] == 3)
    {
        kern = c3;
        kernSize = sizeof(c3) / sizeof(c3[0]);
    }

    char testName[32];
    snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
             sizeNames[vectorSize]);

    return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}

typedef struct BuildKernelInfo
{
    cl_uint offset; // the first vector size to build
    cl_kernel *kernels;
    cl_program *programs;
    const char *nameInCode;
    bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
} BuildKernelInfo;

static cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
{
    BuildKernelInfo *info = (BuildKernelInfo *)p;
    cl_uint i = info->offset + job_id;
    return BuildKernel(info->nameInCode, i, info->kernels + i,
                       info->programs + i, info->relaxedMode);
}

int TestFunc_Int_Float(const Func *f, MTdata d, bool relaxedMode)
{
    int error;
    cl_program programs[VECTOR_SIZE_COUNT];
    cl_kernel kernels[VECTOR_SIZE_COUNT];
    int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
    uint64_t step = getTestStep(sizeof(float), BUFFER_SIZE);
    int scale = (int)((1ULL << 32) / (16 * BUFFER_SIZE / sizeof(float)) + 1);

    logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);

    // This test is not using ThreadPool so we need to disable FTZ here
    // for reference computations
    FPU_mode_type oldMode;
    DisableFTZ(&oldMode);

    Force64BitFPUPrecision();

    // Init the kernels
    {
        BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
                                       f->nameInCode, relaxedMode };
        if ((error = ThreadPool_Do(BuildKernelFn,
                                   gMaxVectorSizeIndex - gMinVectorSizeIndex,
                                   &build_info)))
            return error;
    }

    for (uint64_t i = 0; i < (1ULL << 32); i += step)
    {
        // Init input array
        cl_uint *p = (cl_uint *)gIn;
        if (gWimpyMode)
        {
            for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
                p[j] = (cl_uint)i + j * scale;
        }
        else
        {
            for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
                p[j] = (uint32_t)i + j;
        }

        if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
                                          BUFFER_SIZE, gIn, 0, NULL, NULL)))
        {
            vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
            return error;
        }

        // write garbage into output arrays
        for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
        {
            uint32_t pattern = 0xffffdead;
            memset_pattern4(gOut[j], &pattern, BUFFER_SIZE);
            if ((error =
                     clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
                                          BUFFER_SIZE, gOut[j], 0, NULL, NULL)))
            {
                vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
                           error, j);
                goto exit;
            }
        }

        // Run the kernels
        for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
        {
            size_t vectorSize = sizeValues[j] * sizeof(cl_float);
            size_t localCount = (BUFFER_SIZE + vectorSize - 1)
                / vectorSize; // BUFFER_SIZE / vectorSize  rounded up
            if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
                                        &gOutBuffer[j])))
            {
                LogBuildError(programs[j]);
                goto exit;
            }
            if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer),
                                        &gInBuffer)))
            {
                LogBuildError(programs[j]);
                goto exit;
            }

            if ((error =
                     clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
                                            &localCount, NULL, 0, NULL, NULL)))
            {
                vlog_error("FAILED -- could not execute kernel\n");
                goto exit;
            }
        }

        // Get that moving
        if ((error = clFlush(gQueue))) vlog("clFlush failed\n");

        // Calculate the correctly rounded reference result
        int *r = (int *)gOut_Ref;
        float *s = (float *)gIn;
        for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
            r[j] = f->func.i_f(s[j]);

        // Read the data back
        for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
        {
            if ((error =
                     clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
                                         BUFFER_SIZE, gOut[j], 0, NULL, NULL)))
            {
                vlog_error("ReadArray failed %d\n", error);
                goto exit;
            }
        }

        if (gSkipCorrectnessTesting) break;

        // Verify data
        uint32_t *t = (uint32_t *)gOut_Ref;
        for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
        {
            for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
            {
                uint32_t *q = (uint32_t *)(gOut[k]);
                // If we aren't getting the correctly rounded result
                if (t[j] != q[j])
                {
                    if (ftz && IsFloatSubnormal(s[j]))
                    {
                        unsigned int correct0 = f->func.i_f(0.0);
                        unsigned int correct1 = f->func.i_f(-0.0);
                        if (q[j] == correct0 || q[j] == correct1) continue;
                    }

                    uint32_t err = t[j] - q[j];
                    if (q[j] > t[j]) err = q[j] - t[j];
                    vlog_error("\nERROR: %s%s: %d ulp error at %a (0x%8.8x): "
                               "*%d vs. %d\n",
                               f->name, sizeNames[k], err, ((float *)gIn)[j],
                               ((cl_uint *)gIn)[j], t[j], q[j]);
                    error = -1;
                    goto exit;
                }
            }
        }

        if (0 == (i & 0x0fffffff))
        {
            if (gVerboseBruteForce)
            {
                vlog("base:%14u step:%10zu  bufferSize:%10zd \n", i, step,
                     BUFFER_SIZE);
            }
            else
            {
                vlog(".");
            }
            fflush(stdout);
        }
    }

    if (!gSkipCorrectnessTesting)
    {
        if (gWimpyMode)
            vlog("Wimp pass");
        else
            vlog("passed");
    }

    vlog("\n");

exit:
    RestoreFPState(&oldMode);
    // Release
    for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
    {
        clReleaseKernel(kernels[k]);
        clReleaseProgram(programs[k]);
    }

    return error;
}