aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/math_brute_force/binary_two_results_i_double.cpp
blob: 14f4109239eb088bf0b46d432238582c3e8fd36d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

#include "function_list.h"
#include "test_functions.h"
#include "utility.h"

#include <climits>
#include <cstring>

static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
                       cl_program *p, bool relaxedMode)
{
    const char *c[] = { "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
                        "__kernel void math_kernel",
                        sizeNames[vectorSize],
                        "( __global double",
                        sizeNames[vectorSize],
                        "* out, __global int",
                        sizeNames[vectorSize],
                        "* out2, __global double",
                        sizeNames[vectorSize],
                        "* in1, __global double",
                        sizeNames[vectorSize],
                        "* in2 )\n"
                        "{\n"
                        "   size_t i = get_global_id(0);\n"
                        "   out[i] = ",
                        name,
                        "( in1[i], in2[i], out2 + i );\n"
                        "}\n" };

    const char *c3[] = {
        "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
        "__kernel void math_kernel",
        sizeNames[vectorSize],
        "( __global double* out, __global int* out2, __global double* in, "
        "__global double* in2)\n"
        "{\n"
        "   size_t i = get_global_id(0);\n"
        "   if( i + 1 < get_global_size(0) )\n"
        "   {\n"
        "       double3 d0 = vload3( 0, in + 3 * i );\n"
        "       double3 d1 = vload3( 0, in2 + 3 * i );\n"
        "       int3 i0 = 0xdeaddead;\n"
        "       d0 = ",
        name,
        "( d0, d1, &i0 );\n"
        "       vstore3( d0, 0, out + 3*i );\n"
        "       vstore3( i0, 0, out2 + 3*i );\n"
        "   }\n"
        "   else\n"
        "   {\n"
        "       size_t parity = i & 1;   // Figure out how many elements are "
        "left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
        "buffer size \n"
        "       double3 d0;\n"
        "       double3 d1;\n"
        "       int3 i0 = 0xdeaddead;\n"
        "       switch( parity )\n"
        "       {\n"
        "           case 1:\n"
        "               d0 = (double3)( in[3*i], NAN, NAN ); \n"
        "               d1 = (double3)( in2[3*i], NAN, NAN ); \n"
        "               break;\n"
        "           case 0:\n"
        "               d0 = (double3)( in[3*i], in[3*i+1], NAN ); \n"
        "               d1 = (double3)( in2[3*i], in2[3*i+1], NAN ); \n"
        "               break;\n"
        "       }\n"
        "       d0 = ",
        name,
        "( d0, d1, &i0 );\n"
        "       switch( parity )\n"
        "       {\n"
        "           case 0:\n"
        "               out[3*i+1] = d0.y; \n"
        "               out2[3*i+1] = i0.y; \n"
        "               // fall through\n"
        "           case 1:\n"
        "               out[3*i] = d0.x; \n"
        "               out2[3*i] = i0.x; \n"
        "               break;\n"
        "       }\n"
        "   }\n"
        "}\n"
    };

    const char **kern = c;
    size_t kernSize = sizeof(c) / sizeof(c[0]);

    if (sizeValues[vectorSize] == 3)
    {
        kern = c3;
        kernSize = sizeof(c3) / sizeof(c3[0]);
    }

    char testName[32];
    snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
             sizeNames[vectorSize]);

    return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}

typedef struct BuildKernelInfo
{
    cl_uint offset; // the first vector size to build
    cl_kernel *kernels;
    cl_program *programs;
    const char *nameInCode;
    bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
} BuildKernelInfo;

static cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
{
    BuildKernelInfo *info = (BuildKernelInfo *)p;
    cl_uint i = info->offset + job_id;
    return BuildKernel(info->nameInCode, i, info->kernels + i,
                       info->programs + i, info->relaxedMode);
}

typedef struct ComputeReferenceInfoD_
{
    const double *x;
    const double *y;
    double *r;
    int *i;
    long double (*f_ffpI)(long double, long double, int *);
    cl_uint lim;
    cl_uint count;
} ComputeReferenceInfoD;

static cl_int ReferenceD(cl_uint jid, cl_uint tid, void *userInfo)
{
    ComputeReferenceInfoD *cri = (ComputeReferenceInfoD *)userInfo;
    cl_uint lim = cri->lim;
    cl_uint count = cri->count;
    cl_uint off = jid * count;
    const double *x = cri->x + off;
    const double *y = cri->y + off;
    double *r = cri->r + off;
    int *i = cri->i + off;
    long double (*f)(long double, long double, int *) = cri->f_ffpI;

    if (off + count > lim) count = lim - off;

    Force64BitFPUPrecision();

    for (cl_uint j = 0; j < count; ++j)
        r[j] = (double)f((long double)x[j], (long double)y[j], i + j);

    return CL_SUCCESS;
}

int TestFunc_DoubleI_Double_Double(const Func *f, MTdata d, bool relaxedMode)
{
    int error;
    cl_program programs[VECTOR_SIZE_COUNT];
    cl_kernel kernels[VECTOR_SIZE_COUNT];
    float maxError = 0.0f;
    int64_t maxError2 = 0;
    int ftz = f->ftz || gForceFTZ;
    double maxErrorVal = 0.0f;
    double maxErrorVal2 = 0.0f;
    uint64_t step = getTestStep(sizeof(double), BUFFER_SIZE);

    logFunctionInfo(f->name, sizeof(cl_double), relaxedMode);

    cl_uint threadCount = GetThreadCount();

    Force64BitFPUPrecision();

    int testingRemquo = !strcmp(f->name, "remquo");

    // Init the kernels
    {
        BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
                                       f->nameInCode, relaxedMode };
        if ((error = ThreadPool_Do(BuildKernelFn,
                                   gMaxVectorSizeIndex - gMinVectorSizeIndex,
                                   &build_info)))
            return error;
    }

    for (uint64_t i = 0; i < (1ULL << 32); i += step)
    {
        // Init input array
        double *p = (double *)gIn;
        double *p2 = (double *)gIn2;
        for (size_t j = 0; j < BUFFER_SIZE / sizeof(double); j++)
        {
            p[j] = DoubleFromUInt32(genrand_int32(d));
            p2[j] = DoubleFromUInt32(genrand_int32(d));
        }

        if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
                                          BUFFER_SIZE, gIn, 0, NULL, NULL)))
        {
            vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
            return error;
        }

        if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0,
                                          BUFFER_SIZE, gIn2, 0, NULL, NULL)))
        {
            vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error);
            return error;
        }

        // write garbage into output arrays
        for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
        {
            uint32_t pattern = 0xffffdead;
            memset_pattern4(gOut[j], &pattern, BUFFER_SIZE);
            if ((error =
                     clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
                                          BUFFER_SIZE, gOut[j], 0, NULL, NULL)))
            {
                vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
                           error, j);
                goto exit;
            }

            memset_pattern4(gOut2[j], &pattern, BUFFER_SIZE);
            if ((error = clEnqueueWriteBuffer(gQueue, gOutBuffer2[j], CL_FALSE,
                                              0, BUFFER_SIZE, gOut2[j], 0, NULL,
                                              NULL)))
            {
                vlog_error("\n*** Error %d in clEnqueueWriteBuffer2b(%d) ***\n",
                           error, j);
                goto exit;
            }
        }

        // Run the kernels
        for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
        {
            size_t vectorSize = sizeof(cl_double) * sizeValues[j];
            size_t localCount = (BUFFER_SIZE + vectorSize - 1)
                / vectorSize; // BUFFER_SIZE / vectorSize  rounded up
            if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
                                        &gOutBuffer[j])))
            {
                LogBuildError(programs[j]);
                goto exit;
            }
            if ((error = clSetKernelArg(kernels[j], 1, sizeof(gOutBuffer2[j]),
                                        &gOutBuffer2[j])))
            {
                LogBuildError(programs[j]);
                goto exit;
            }
            if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer),
                                        &gInBuffer)))
            {
                LogBuildError(programs[j]);
                goto exit;
            }
            if ((error = clSetKernelArg(kernels[j], 3, sizeof(gInBuffer2),
                                        &gInBuffer2)))
            {
                LogBuildError(programs[j]);
                goto exit;
            }

            if ((error =
                     clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
                                            &localCount, NULL, 0, NULL, NULL)))
            {
                vlog_error("FAILED -- could not execute kernel\n");
                goto exit;
            }
        }

        // Get that moving
        if ((error = clFlush(gQueue))) vlog("clFlush failed\n");

        // Calculate the correctly rounded reference result
        double *s = (double *)gIn;
        double *s2 = (double *)gIn2;

        if (threadCount > 1)
        {
            ComputeReferenceInfoD cri;
            cri.x = s;
            cri.y = s2;
            cri.r = (double *)gOut_Ref;
            cri.i = (int *)gOut_Ref2;
            cri.f_ffpI = f->dfunc.f_ffpI;
            cri.lim = BUFFER_SIZE / sizeof(double);
            cri.count = (cri.lim + threadCount - 1) / threadCount;
            ThreadPool_Do(ReferenceD, threadCount, &cri);
        }
        else
        {
            double *r = (double *)gOut_Ref;
            int *r2 = (int *)gOut_Ref2;
            for (size_t j = 0; j < BUFFER_SIZE / sizeof(double); j++)
                r[j] = (double)f->dfunc.f_ffpI(s[j], s2[j], r2 + j);
        }

        // Read the data back
        for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
        {
            if ((error =
                     clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
                                         BUFFER_SIZE, gOut[j], 0, NULL, NULL)))
            {
                vlog_error("ReadArray failed %d\n", error);
                goto exit;
            }
            if ((error =
                     clEnqueueReadBuffer(gQueue, gOutBuffer2[j], CL_TRUE, 0,
                                         BUFFER_SIZE, gOut2[j], 0, NULL, NULL)))
            {
                vlog_error("ReadArray2 failed %d\n", error);
                goto exit;
            }
        }

        if (gSkipCorrectnessTesting) break;

        // Verify data
        uint64_t *t = (uint64_t *)gOut_Ref;
        int32_t *t2 = (int32_t *)gOut_Ref2;
        for (size_t j = 0; j < BUFFER_SIZE / sizeof(double); j++)
        {
            for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
            {
                uint64_t *q = (uint64_t *)gOut[k];
                int32_t *q2 = (int32_t *)gOut2[k];

                // Check for exact match to correctly rounded result
                if (t[j] == q[j] && t2[j] == q2[j]) continue;

                // Check for paired NaNs
                if ((t[j] & 0x7fffffffffffffffUL) > 0x7ff0000000000000UL
                    && (q[j] & 0x7fffffffffffffffUL) > 0x7ff0000000000000UL
                    && t2[j] == q2[j])
                    continue;

                double test = ((double *)q)[j];
                int correct2 = INT_MIN;
                long double correct = f->dfunc.f_ffpI(s[j], s2[j], &correct2);
                float err = Bruteforce_Ulp_Error_Double(test, correct);
                int64_t iErr;

                // in case of remquo, we only care about the sign and last
                // seven bits of integer as per the spec.
                if (testingRemquo)
                    iErr = (long long)(q2[j] & 0x0000007f)
                        - (long long)(correct2 & 0x0000007f);
                else
                    iErr = (long long)q2[j] - (long long)correct2;

                // For remquo, if y = 0, x is infinite, or either is NaN
                // then the standard either neglects to say what is returned
                // in iptr or leaves it undefined or implementation defined.
                int iptrUndefined = fabs(((double *)gIn)[j]) == INFINITY
                    || ((double *)gIn2)[j] == 0.0 || isnan(((double *)gIn2)[j])
                    || isnan(((double *)gIn)[j]);
                if (iptrUndefined) iErr = 0;

                int fail = !(fabsf(err) <= f->double_ulps && iErr == 0);
                if (ftz && fail)
                {
                    // retry per section 6.5.3.2
                    if (IsDoubleResultSubnormal(correct, f->double_ulps))
                    {
                        fail = fail && !(test == 0.0f && iErr == 0);
                        if (!fail) err = 0.0f;
                    }

                    // retry per section 6.5.3.3
                    if (IsDoubleSubnormal(s[j]))
                    {
                        int correct3i, correct4i;
                        long double correct3 =
                            f->dfunc.f_ffpI(0.0, s2[j], &correct3i);
                        long double correct4 =
                            f->dfunc.f_ffpI(-0.0, s2[j], &correct4i);
                        float err2 =
                            Bruteforce_Ulp_Error_Double(test, correct3);
                        float err3 =
                            Bruteforce_Ulp_Error_Double(test, correct4);
                        int64_t iErr3 = (long long)q2[j] - (long long)correct3i;
                        int64_t iErr4 = (long long)q2[j] - (long long)correct4i;
                        fail = fail
                            && ((!(fabsf(err2) <= f->double_ulps && iErr3 == 0))
                                && (!(fabsf(err3) <= f->double_ulps
                                      && iErr4 == 0)));
                        if (fabsf(err2) < fabsf(err)) err = err2;
                        if (fabsf(err3) < fabsf(err)) err = err3;
                        if (llabs(iErr3) < llabs(iErr)) iErr = iErr3;
                        if (llabs(iErr4) < llabs(iErr)) iErr = iErr4;

                        // retry per section 6.5.3.4
                        if (IsDoubleResultSubnormal(correct2, f->double_ulps)
                            || IsDoubleResultSubnormal(correct3,
                                                       f->double_ulps))
                        {
                            fail = fail
                                && !(test == 0.0f
                                     && (iErr3 == 0 || iErr4 == 0));
                            if (!fail) err = 0.0f;
                        }

                        // try with both args as zero
                        if (IsDoubleSubnormal(s2[j]))
                        {
                            int correct7i, correct8i;
                            correct3 = f->dfunc.f_ffpI(0.0, 0.0, &correct3i);
                            correct4 = f->dfunc.f_ffpI(-0.0, 0.0, &correct4i);
                            long double correct7 =
                                f->dfunc.f_ffpI(0.0, -0.0, &correct7i);
                            long double correct8 =
                                f->dfunc.f_ffpI(-0.0, -0.0, &correct8i);
                            err2 = Bruteforce_Ulp_Error_Double(test, correct3);
                            err3 = Bruteforce_Ulp_Error_Double(test, correct4);
                            float err4 =
                                Bruteforce_Ulp_Error_Double(test, correct7);
                            float err5 =
                                Bruteforce_Ulp_Error_Double(test, correct8);
                            iErr3 = (long long)q2[j] - (long long)correct3i;
                            iErr4 = (long long)q2[j] - (long long)correct4i;
                            int64_t iErr7 =
                                (long long)q2[j] - (long long)correct7i;
                            int64_t iErr8 =
                                (long long)q2[j] - (long long)correct8i;
                            fail = fail
                                && ((!(fabsf(err2) <= f->double_ulps
                                       && iErr3 == 0))
                                    && (!(fabsf(err3) <= f->double_ulps
                                          && iErr4 == 0))
                                    && (!(fabsf(err4) <= f->double_ulps
                                          && iErr7 == 0))
                                    && (!(fabsf(err5) <= f->double_ulps
                                          && iErr8 == 0)));
                            if (fabsf(err2) < fabsf(err)) err = err2;
                            if (fabsf(err3) < fabsf(err)) err = err3;
                            if (fabsf(err4) < fabsf(err)) err = err4;
                            if (fabsf(err5) < fabsf(err)) err = err5;
                            if (llabs(iErr3) < llabs(iErr)) iErr = iErr3;
                            if (llabs(iErr4) < llabs(iErr)) iErr = iErr4;
                            if (llabs(iErr7) < llabs(iErr)) iErr = iErr7;
                            if (llabs(iErr8) < llabs(iErr)) iErr = iErr8;

                            // retry per section 6.5.3.4
                            if (IsDoubleResultSubnormal(correct3,
                                                        f->double_ulps)
                                || IsDoubleResultSubnormal(correct4,
                                                           f->double_ulps)
                                || IsDoubleResultSubnormal(correct7,
                                                           f->double_ulps)
                                || IsDoubleResultSubnormal(correct8,
                                                           f->double_ulps))
                            {
                                fail = fail
                                    && !(test == 0.0f
                                         && (iErr3 == 0 || iErr4 == 0
                                             || iErr7 == 0 || iErr8 == 0));
                                if (!fail) err = 0.0f;
                            }
                        }
                    }
                    else if (IsDoubleSubnormal(s2[j]))
                    {
                        int correct3i, correct4i;
                        long double correct3 =
                            f->dfunc.f_ffpI(s[j], 0.0, &correct3i);
                        long double correct4 =
                            f->dfunc.f_ffpI(s[j], -0.0, &correct4i);
                        float err2 =
                            Bruteforce_Ulp_Error_Double(test, correct3);
                        float err3 =
                            Bruteforce_Ulp_Error_Double(test, correct4);
                        int64_t iErr3 = (long long)q2[j] - (long long)correct3i;
                        int64_t iErr4 = (long long)q2[j] - (long long)correct4i;
                        fail = fail
                            && ((!(fabsf(err2) <= f->double_ulps && iErr3 == 0))
                                && (!(fabsf(err3) <= f->double_ulps
                                      && iErr4 == 0)));
                        if (fabsf(err2) < fabsf(err)) err = err2;
                        if (fabsf(err3) < fabsf(err)) err = err3;
                        if (llabs(iErr3) < llabs(iErr)) iErr = iErr3;
                        if (llabs(iErr4) < llabs(iErr)) iErr = iErr4;

                        // retry per section 6.5.3.4
                        if (IsDoubleResultSubnormal(correct2, f->double_ulps)
                            || IsDoubleResultSubnormal(correct3,
                                                       f->double_ulps))
                        {
                            fail = fail
                                && !(test == 0.0f
                                     && (iErr3 == 0 || iErr4 == 0));
                            if (!fail) err = 0.0f;
                        }
                    }
                }
                if (fabsf(err) > maxError)
                {
                    maxError = fabsf(err);
                    maxErrorVal = s[j];
                }
                if (llabs(iErr) > maxError2)
                {
                    maxError2 = llabs(iErr);
                    maxErrorVal2 = s[j];
                }

                if (fail)
                {
                    vlog_error(
                        "\nERROR: %sD%s: {%f, %lld} ulp error at {%.13la, "
                        "%.13la} ({ 0x%16.16llx, 0x%16.16llx}): *{%.13la, "
                        "%d} ({ 0x%16.16llx, 0x%8.8x}) vs. {%.13la, %d} ({ "
                        "0x%16.16llx, 0x%8.8x})\n",
                        f->name, sizeNames[k], err, iErr, ((double *)gIn)[j],
                        ((double *)gIn2)[j], ((cl_ulong *)gIn)[j],
                        ((cl_ulong *)gIn2)[j], ((double *)gOut_Ref)[j],
                        ((int *)gOut_Ref2)[j], ((cl_ulong *)gOut_Ref)[j],
                        ((cl_uint *)gOut_Ref2)[j], test, q2[j],
                        ((cl_ulong *)q)[j], ((cl_uint *)q2)[j]);
                    error = -1;
                    goto exit;
                }
            }
        }

        if (0 == (i & 0x0fffffff))
        {
            if (gVerboseBruteForce)
            {
                vlog("base:%14u step:%10zu  bufferSize:%10zd \n", i, step,
                     BUFFER_SIZE);
            }
            else
            {
                vlog(".");
            }
            fflush(stdout);
        }
    }

    if (!gSkipCorrectnessTesting)
    {
        if (gWimpyMode)
            vlog("Wimp pass");
        else
            vlog("passed");

        vlog("\t{%8.2f, %lld} @ {%a, %a}", maxError, maxError2, maxErrorVal,
             maxErrorVal2);
    }

    vlog("\n");

exit:
    // Release
    for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
    {
        clReleaseKernel(kernels[k]);
        clReleaseProgram(programs[k]);
    }

    return error;
}