aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/math_brute_force/binary_i_float.cpp
blob: e65a9aaffc768566160ee94ab4812b3339a9def1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

#include "function_list.h"
#include "test_functions.h"
#include "utility.h"

#include <climits>
#include <cstring>

static int BuildKernel(const char *name, int vectorSize, cl_uint kernel_count,
                       cl_kernel *k, cl_program *p, bool relaxedMode)
{
    const char *c[] = { "__kernel void math_kernel",
                        sizeNames[vectorSize],
                        "( __global float",
                        sizeNames[vectorSize],
                        "* out, __global float",
                        sizeNames[vectorSize],
                        "* in1, __global int",
                        sizeNames[vectorSize],
                        "* in2 )\n"
                        "{\n"
                        "   size_t i = get_global_id(0);\n"
                        "   out[i] = ",
                        name,
                        "( in1[i], in2[i] );\n"
                        "}\n" };

    const char *c3[] = {
        "__kernel void math_kernel",
        sizeNames[vectorSize],
        "( __global float* out, __global float* in, __global int* in2)\n"
        "{\n"
        "   size_t i = get_global_id(0);\n"
        "   if( i + 1 < get_global_size(0) )\n"
        "   {\n"
        "       float3 f0 = vload3( 0, in + 3 * i );\n"
        "       int3 i0 = vload3( 0, in2 + 3 * i );\n"
        "       f0 = ",
        name,
        "( f0, i0 );\n"
        "       vstore3( f0, 0, out + 3*i );\n"
        "   }\n"
        "   else\n"
        "   {\n"
        "       size_t parity = i & 1;   // Figure out how many elements are "
        "left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
        "buffer size \n"
        "       float3 f0;\n"
        "       int3 i0;\n"
        "       switch( parity )\n"
        "       {\n"
        "           case 1:\n"
        "               f0 = (float3)( in[3*i], NAN, NAN ); \n"
        "               i0 = (int3)( in2[3*i], 0xdead, 0xdead ); \n"
        "               break;\n"
        "           case 0:\n"
        "               f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
        "               i0 = (int3)( in2[3*i], in2[3*i+1], 0xdead ); \n"
        "               break;\n"
        "       }\n"
        "       f0 = ",
        name,
        "( f0, i0 );\n"
        "       switch( parity )\n"
        "       {\n"
        "           case 0:\n"
        "               out[3*i+1] = f0.y; \n"
        "               // fall through\n"
        "           case 1:\n"
        "               out[3*i] = f0.x; \n"
        "               break;\n"
        "       }\n"
        "   }\n"
        "}\n"
    };

    const char **kern = c;
    size_t kernSize = sizeof(c) / sizeof(c[0]);

    if (sizeValues[vectorSize] == 3)
    {
        kern = c3;
        kernSize = sizeof(c3) / sizeof(c3[0]);
    }

    char testName[32];
    snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
             sizeNames[vectorSize]);

    return MakeKernels(kern, (cl_uint)kernSize, testName, kernel_count, k, p,
                       relaxedMode);
}

typedef struct BuildKernelInfo
{
    cl_uint offset; // the first vector size to build
    cl_uint kernel_count;
    cl_kernel **kernels;
    cl_program *programs;
    const char *nameInCode;
    bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
} BuildKernelInfo;

static cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
{
    BuildKernelInfo *info = (BuildKernelInfo *)p;
    cl_uint i = info->offset + job_id;
    return BuildKernel(info->nameInCode, i, info->kernel_count,
                       info->kernels[i], info->programs + i, info->relaxedMode);
}

// Thread specific data for a worker thread
typedef struct ThreadInfo
{
    cl_mem inBuf; // input buffer for the thread
    cl_mem inBuf2; // input buffer for the thread
    cl_mem outBuf[VECTOR_SIZE_COUNT]; // output buffers for the thread
    float maxError; // max error value. Init to 0.
    double
        maxErrorValue; // position of the max error value (param 1).  Init to 0.
    cl_int maxErrorValue2; // position of the max error value (param 2).  Init
                           // to 0.
    MTdata d;
    cl_command_queue tQueue; // per thread command queue to improve performance
} ThreadInfo;

typedef struct TestInfo
{
    size_t subBufferSize; // Size of the sub-buffer in elements
    const Func *f; // A pointer to the function info
    cl_program programs[VECTOR_SIZE_COUNT]; // programs for various vector sizes
    cl_kernel
        *k[VECTOR_SIZE_COUNT]; // arrays of thread-specific kernels for each
                               // worker thread:  k[vector_size][thread_id]
    ThreadInfo *
        tinfo; // An array of thread specific information for each worker thread
    cl_uint threadCount; // Number of worker threads
    cl_uint jobCount; // Number of jobs
    cl_uint step; // step between each chunk and the next.
    cl_uint scale; // stride between individual test values
    float ulps; // max_allowed ulps
    int ftz; // non-zero if running in flush to zero mode

    // no special values
} TestInfo;

// A table of more difficult cases to get right
static const float specialValues[] = {
    -NAN,
    -INFINITY,
    -FLT_MAX,
    MAKE_HEX_FLOAT(-0x1.000002p64f, -0x1000002L, 40),
    MAKE_HEX_FLOAT(-0x1.0p64f, -0x1L, 64),
    MAKE_HEX_FLOAT(-0x1.fffffep63f, -0x1fffffeL, 39),
    MAKE_HEX_FLOAT(-0x1.000002p63f, -0x1000002L, 39),
    MAKE_HEX_FLOAT(-0x1.0p63f, -0x1L, 63),
    MAKE_HEX_FLOAT(-0x1.fffffep62f, -0x1fffffeL, 38),
    MAKE_HEX_FLOAT(-0x1.000002p32f, -0x1000002L, 8),
    MAKE_HEX_FLOAT(-0x1.0p32f, -0x1L, 32),
    MAKE_HEX_FLOAT(-0x1.fffffep31f, -0x1fffffeL, 7),
    MAKE_HEX_FLOAT(-0x1.000002p31f, -0x1000002L, 7),
    MAKE_HEX_FLOAT(-0x1.0p31f, -0x1L, 31),
    MAKE_HEX_FLOAT(-0x1.fffffep30f, -0x1fffffeL, 6),
    -1000.f,
    -100.f,
    -4.0f,
    -3.5f,
    -3.0f,
    MAKE_HEX_FLOAT(-0x1.800002p1f, -0x1800002L, -23),
    -2.5f,
    MAKE_HEX_FLOAT(-0x1.7ffffep1f, -0x17ffffeL, -23),
    -2.0f,
    MAKE_HEX_FLOAT(-0x1.800002p0f, -0x1800002L, -24),
    -1.5f,
    MAKE_HEX_FLOAT(-0x1.7ffffep0f, -0x17ffffeL, -24),
    MAKE_HEX_FLOAT(-0x1.000002p0f, -0x1000002L, -24),
    -1.0f,
    MAKE_HEX_FLOAT(-0x1.fffffep-1f, -0x1fffffeL, -25),
    MAKE_HEX_FLOAT(-0x1.000002p-1f, -0x1000002L, -25),
    -0.5f,
    MAKE_HEX_FLOAT(-0x1.fffffep-2f, -0x1fffffeL, -26),
    MAKE_HEX_FLOAT(-0x1.000002p-2f, -0x1000002L, -26),
    -0.25f,
    MAKE_HEX_FLOAT(-0x1.fffffep-3f, -0x1fffffeL, -27),
    MAKE_HEX_FLOAT(-0x1.000002p-126f, -0x1000002L, -150),
    -FLT_MIN,
    MAKE_HEX_FLOAT(-0x0.fffffep-126f, -0x0fffffeL, -150),
    MAKE_HEX_FLOAT(-0x0.000ffep-126f, -0x0000ffeL, -150),
    MAKE_HEX_FLOAT(-0x0.0000fep-126f, -0x00000feL, -150),
    MAKE_HEX_FLOAT(-0x0.00000ep-126f, -0x000000eL, -150),
    MAKE_HEX_FLOAT(-0x0.00000cp-126f, -0x000000cL, -150),
    MAKE_HEX_FLOAT(-0x0.00000ap-126f, -0x000000aL, -150),
    MAKE_HEX_FLOAT(-0x0.000008p-126f, -0x0000008L, -150),
    MAKE_HEX_FLOAT(-0x0.000006p-126f, -0x0000006L, -150),
    MAKE_HEX_FLOAT(-0x0.000004p-126f, -0x0000004L, -150),
    MAKE_HEX_FLOAT(-0x0.000002p-126f, -0x0000002L, -150),
    -0.0f,

    +NAN,
    +INFINITY,
    +FLT_MAX,
    MAKE_HEX_FLOAT(+0x1.000002p64f, +0x1000002L, 40),
    MAKE_HEX_FLOAT(+0x1.0p64f, +0x1L, 64),
    MAKE_HEX_FLOAT(+0x1.fffffep63f, +0x1fffffeL, 39),
    MAKE_HEX_FLOAT(+0x1.000002p63f, +0x1000002L, 39),
    MAKE_HEX_FLOAT(+0x1.0p63f, +0x1L, 63),
    MAKE_HEX_FLOAT(+0x1.fffffep62f, +0x1fffffeL, 38),
    MAKE_HEX_FLOAT(+0x1.000002p32f, +0x1000002L, 8),
    MAKE_HEX_FLOAT(+0x1.0p32f, +0x1L, 32),
    MAKE_HEX_FLOAT(+0x1.fffffep31f, +0x1fffffeL, 7),
    MAKE_HEX_FLOAT(+0x1.000002p31f, +0x1000002L, 7),
    MAKE_HEX_FLOAT(+0x1.0p31f, +0x1L, 31),
    MAKE_HEX_FLOAT(+0x1.fffffep30f, +0x1fffffeL, 6),
    +1000.f,
    +100.f,
    +4.0f,
    +3.5f,
    +3.0f,
    MAKE_HEX_FLOAT(+0x1.800002p1f, +0x1800002L, -23),
    2.5f,
    MAKE_HEX_FLOAT(+0x1.7ffffep1f, +0x17ffffeL, -23),
    +2.0f,
    MAKE_HEX_FLOAT(+0x1.800002p0f, +0x1800002L, -24),
    1.5f,
    MAKE_HEX_FLOAT(+0x1.7ffffep0f, +0x17ffffeL, -24),
    MAKE_HEX_FLOAT(+0x1.000002p0f, +0x1000002L, -24),
    +1.0f,
    MAKE_HEX_FLOAT(+0x1.fffffep-1f, +0x1fffffeL, -25),
    MAKE_HEX_FLOAT(+0x1.000002p-1f, +0x1000002L, -25),
    +0.5f,
    MAKE_HEX_FLOAT(+0x1.fffffep-2f, +0x1fffffeL, -26),
    MAKE_HEX_FLOAT(+0x1.000002p-2f, +0x1000002L, -26),
    +0.25f,
    MAKE_HEX_FLOAT(+0x1.fffffep-3f, +0x1fffffeL, -27),
    MAKE_HEX_FLOAT(0x1.000002p-126f, 0x1000002L, -150),
    +FLT_MIN,
    MAKE_HEX_FLOAT(+0x0.fffffep-126f, +0x0fffffeL, -150),
    MAKE_HEX_FLOAT(+0x0.000ffep-126f, +0x0000ffeL, -150),
    MAKE_HEX_FLOAT(+0x0.0000fep-126f, +0x00000feL, -150),
    MAKE_HEX_FLOAT(+0x0.00000ep-126f, +0x000000eL, -150),
    MAKE_HEX_FLOAT(+0x0.00000cp-126f, +0x000000cL, -150),
    MAKE_HEX_FLOAT(+0x0.00000ap-126f, +0x000000aL, -150),
    MAKE_HEX_FLOAT(+0x0.000008p-126f, +0x0000008L, -150),
    MAKE_HEX_FLOAT(+0x0.000006p-126f, +0x0000006L, -150),
    MAKE_HEX_FLOAT(+0x0.000004p-126f, +0x0000004L, -150),
    MAKE_HEX_FLOAT(+0x0.000002p-126f, +0x0000002L, -150),
    +0.0f,
};

static const size_t specialValuesCount =
    sizeof(specialValues) / sizeof(specialValues[0]);

static const int specialValuesInt[] = {
    0,           1,           2,           3,          126,        127,
    128,         0x02000001,  0x04000001,  1465264071, 1488522147, -1,
    -2,          -3,          -126,        -127,       -128,       -0x02000001,
    -0x04000001, -1465264071, -1488522147,
};
static size_t specialValuesIntCount =
    sizeof(specialValuesInt) / sizeof(specialValuesInt[0]);

static cl_int Test(cl_uint job_id, cl_uint thread_id, void *data);

int TestFunc_Float_Float_Int(const Func *f, MTdata d, bool relaxedMode)
{
    TestInfo test_info;
    cl_int error;
    float maxError = 0.0f;
    double maxErrorVal = 0.0;
    cl_int maxErrorVal2 = 0;

    logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);

    // Init test_info
    memset(&test_info, 0, sizeof(test_info));
    test_info.threadCount = GetThreadCount();
    test_info.subBufferSize = BUFFER_SIZE
        / (sizeof(cl_float) * RoundUpToNextPowerOfTwo(test_info.threadCount));
    test_info.scale = getTestScale(sizeof(cl_float));

    test_info.step = (cl_uint)test_info.subBufferSize * test_info.scale;
    if (test_info.step / test_info.subBufferSize != test_info.scale)
    {
        // there was overflow
        test_info.jobCount = 1;
    }
    else
    {
        test_info.jobCount = (cl_uint)((1ULL << 32) / test_info.step);
    }

    test_info.f = f;
    test_info.ulps = gIsEmbedded ? f->float_embedded_ulps : f->float_ulps;
    test_info.ftz =
        f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);

    // cl_kernels aren't thread safe, so we make one for each vector size for
    // every thread
    for (auto i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
    {
        size_t array_size = test_info.threadCount * sizeof(cl_kernel);
        test_info.k[i] = (cl_kernel *)malloc(array_size);
        if (NULL == test_info.k[i])
        {
            vlog_error("Error: Unable to allocate storage for kernels!\n");
            error = CL_OUT_OF_HOST_MEMORY;
            goto exit;
        }
        memset(test_info.k[i], 0, array_size);
    }
    test_info.tinfo =
        (ThreadInfo *)malloc(test_info.threadCount * sizeof(*test_info.tinfo));
    if (NULL == test_info.tinfo)
    {
        vlog_error(
            "Error: Unable to allocate storage for thread specific data.\n");
        error = CL_OUT_OF_HOST_MEMORY;
        goto exit;
    }
    memset(test_info.tinfo, 0,
           test_info.threadCount * sizeof(*test_info.tinfo));
    for (cl_uint i = 0; i < test_info.threadCount; i++)
    {
        cl_buffer_region region = {
            i * test_info.subBufferSize * sizeof(cl_float),
            test_info.subBufferSize * sizeof(cl_float)
        };
        test_info.tinfo[i].inBuf =
            clCreateSubBuffer(gInBuffer, CL_MEM_READ_ONLY,
                              CL_BUFFER_CREATE_TYPE_REGION, &region, &error);
        if (error || NULL == test_info.tinfo[i].inBuf)
        {
            vlog_error("Error: Unable to create sub-buffer of gInBuffer for "
                       "region {%zd, %zd}\n",
                       region.origin, region.size);
            goto exit;
        }
        cl_buffer_region region2 = { i * test_info.subBufferSize
                                         * sizeof(cl_int),
                                     test_info.subBufferSize * sizeof(cl_int) };
        test_info.tinfo[i].inBuf2 =
            clCreateSubBuffer(gInBuffer2, CL_MEM_READ_ONLY,
                              CL_BUFFER_CREATE_TYPE_REGION, &region2, &error);
        if (error || NULL == test_info.tinfo[i].inBuf2)
        {
            vlog_error("Error: Unable to create sub-buffer of gInBuffer2 for "
                       "region {%zd, %zd}\n",
                       region.origin, region.size);
            goto exit;
        }

        for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
        {
            test_info.tinfo[i].outBuf[j] = clCreateSubBuffer(
                gOutBuffer[j], CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION,
                &region, &error);
            if (error || NULL == test_info.tinfo[i].outBuf[j])
            {
                vlog_error("Error: Unable to create sub-buffer of "
                           "gOutBuffer[%d] for region {%zd, %zd}\n",
                           (int)j, region.origin, region.size);
                goto exit;
            }
        }
        test_info.tinfo[i].tQueue =
            clCreateCommandQueue(gContext, gDevice, 0, &error);
        if (NULL == test_info.tinfo[i].tQueue || error)
        {
            vlog_error("clCreateCommandQueue failed. (%d)\n", error);
            goto exit;
        }

        test_info.tinfo[i].d = init_genrand(genrand_int32(d));
    }

    // Init the kernels
    {
        BuildKernelInfo build_info = {
            gMinVectorSizeIndex, test_info.threadCount, test_info.k,
            test_info.programs,  f->nameInCode,         relaxedMode
        };
        if ((error = ThreadPool_Do(BuildKernelFn,
                                   gMaxVectorSizeIndex - gMinVectorSizeIndex,
                                   &build_info)))
            goto exit;
    }

    // Run the kernels
    if (!gSkipCorrectnessTesting)
    {
        error = ThreadPool_Do(Test, test_info.jobCount, &test_info);

        // Accumulate the arithmetic errors
        for (cl_uint i = 0; i < test_info.threadCount; i++)
        {
            if (test_info.tinfo[i].maxError > maxError)
            {
                maxError = test_info.tinfo[i].maxError;
                maxErrorVal = test_info.tinfo[i].maxErrorValue;
                maxErrorVal2 = test_info.tinfo[i].maxErrorValue2;
            }
        }

        if (error) goto exit;

        if (gWimpyMode)
            vlog("Wimp pass");
        else
            vlog("passed");

        vlog("\t%8.2f @ {%a, %d}", maxError, maxErrorVal, maxErrorVal2);
    }

    vlog("\n");

exit:
    // Release
    for (auto i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
    {
        clReleaseProgram(test_info.programs[i]);
        if (test_info.k[i])
        {
            for (cl_uint j = 0; j < test_info.threadCount; j++)
                clReleaseKernel(test_info.k[i][j]);

            free(test_info.k[i]);
        }
    }
    if (test_info.tinfo)
    {
        for (cl_uint i = 0; i < test_info.threadCount; i++)
        {
            free_mtdata(test_info.tinfo[i].d);
            clReleaseMemObject(test_info.tinfo[i].inBuf);
            clReleaseMemObject(test_info.tinfo[i].inBuf2);
            for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
                clReleaseMemObject(test_info.tinfo[i].outBuf[j]);
            clReleaseCommandQueue(test_info.tinfo[i].tQueue);
        }

        free(test_info.tinfo);
    }

    return error;
}

static cl_int Test(cl_uint job_id, cl_uint thread_id, void *data)
{
    const TestInfo *job = (const TestInfo *)data;
    size_t buffer_elements = job->subBufferSize;
    size_t buffer_size = buffer_elements * sizeof(cl_float);
    cl_uint base = job_id * (cl_uint)job->step;
    ThreadInfo *tinfo = job->tinfo + thread_id;
    fptr func = job->f->func;
    int ftz = job->ftz;
    float ulps = job->ulps;
    MTdata d = tinfo->d;
    cl_int error;
    const char *name = job->f->name;
    cl_uint *t = 0;
    cl_float *r = 0;
    cl_float *s = 0;
    cl_int *s2 = 0;

    // start the map of the output arrays
    cl_event e[VECTOR_SIZE_COUNT];
    cl_uint *out[VECTOR_SIZE_COUNT];
    for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
    {
        out[j] = (cl_uint *)clEnqueueMapBuffer(
            tinfo->tQueue, tinfo->outBuf[j], CL_FALSE, CL_MAP_WRITE, 0,
            buffer_size, 0, NULL, e + j, &error);
        if (error || NULL == out[j])
        {
            vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
                       error);
            return error;
        }
    }

    // Get that moving
    if ((error = clFlush(tinfo->tQueue))) vlog("clFlush failed\n");

    // Init input array
    cl_uint *p = (cl_uint *)gIn + thread_id * buffer_elements;
    cl_uint *p2 = (cl_uint *)gIn2 + thread_id * buffer_elements;
    size_t idx = 0;
    int totalSpecialValueCount = specialValuesCount * specialValuesIntCount;
    int lastSpecialJobIndex = (totalSpecialValueCount - 1) / buffer_elements;

    if (job_id <= (cl_uint)lastSpecialJobIndex)
    { // test edge cases
        float *fp = (float *)p;
        cl_int *ip2 = (cl_int *)p2;
        uint32_t x, y;

        x = (job_id * buffer_elements) % specialValuesCount;
        y = (job_id * buffer_elements) / specialValuesCount;

        for (; idx < buffer_elements; idx++)
        {
            fp[idx] = specialValues[x];
            ip2[idx] = specialValuesInt[y];
            ++x;
            if (x >= specialValuesCount)
            {
                x = 0;
                y++;
                if (y >= specialValuesIntCount) break;
            }
        }
    }

    // Init any remaining values.
    for (; idx < buffer_elements; idx++)
    {
        p[idx] = genrand_int32(d);
        p2[idx] = genrand_int32(d);
    }

    if ((error = clEnqueueWriteBuffer(tinfo->tQueue, tinfo->inBuf, CL_FALSE, 0,
                                      buffer_size, p, 0, NULL, NULL)))
    {
        vlog_error("Error: clEnqueueWriteBuffer failed! err: %d\n", error);
        goto exit;
    }

    if ((error = clEnqueueWriteBuffer(tinfo->tQueue, tinfo->inBuf2, CL_FALSE, 0,
                                      buffer_size, p2, 0, NULL, NULL)))
    {
        vlog_error("Error: clEnqueueWriteBuffer failed! err: %d\n", error);
        goto exit;
    }

    for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
    {
        // Wait for the map to finish
        if ((error = clWaitForEvents(1, e + j)))
        {
            vlog_error("Error: clWaitForEvents failed! err: %d\n", error);
            goto exit;
        }
        if ((error = clReleaseEvent(e[j])))
        {
            vlog_error("Error: clReleaseEvent failed! err: %d\n", error);
            goto exit;
        }

        // Fill the result buffer with garbage, so that old results don't carry
        // over
        uint32_t pattern = 0xffffdead;
        memset_pattern4(out[j], &pattern, buffer_size);
        if ((error = clEnqueueUnmapMemObject(tinfo->tQueue, tinfo->outBuf[j],
                                             out[j], 0, NULL, NULL)))
        {
            vlog_error("Error: clEnqueueMapBuffer failed! err: %d\n", error);
            goto exit;
        }

        // run the kernel
        size_t vectorCount =
            (buffer_elements + sizeValues[j] - 1) / sizeValues[j];
        cl_kernel kernel = job->k[j][thread_id]; // each worker thread has its
                                                 // own copy of the cl_kernel
        cl_program program = job->programs[j];

        if ((error = clSetKernelArg(kernel, 0, sizeof(tinfo->outBuf[j]),
                                    &tinfo->outBuf[j])))
        {
            LogBuildError(program);
            return error;
        }
        if ((error = clSetKernelArg(kernel, 1, sizeof(tinfo->inBuf),
                                    &tinfo->inBuf)))
        {
            LogBuildError(program);
            return error;
        }
        if ((error = clSetKernelArg(kernel, 2, sizeof(tinfo->inBuf2),
                                    &tinfo->inBuf2)))
        {
            LogBuildError(program);
            return error;
        }

        if ((error = clEnqueueNDRangeKernel(tinfo->tQueue, kernel, 1, NULL,
                                            &vectorCount, NULL, 0, NULL, NULL)))
        {
            vlog_error("FAILED -- could not execute kernel\n");
            goto exit;
        }
    }

    // Get that moving
    if ((error = clFlush(tinfo->tQueue))) vlog("clFlush 2 failed\n");

    if (gSkipCorrectnessTesting) return CL_SUCCESS;

    // Calculate the correctly rounded reference result
    r = (float *)gOut_Ref + thread_id * buffer_elements;
    s = (float *)gIn + thread_id * buffer_elements;
    s2 = (cl_int *)gIn2 + thread_id * buffer_elements;
    for (size_t j = 0; j < buffer_elements; j++)
        r[j] = (float)func.f_fi(s[j], s2[j]);

    // Read the data back -- no need to wait for the first N-1 buffers but wait
    // for the last buffer. This is an in order queue.
    for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
    {
        cl_bool blocking = (j + 1 < gMaxVectorSizeIndex) ? CL_FALSE : CL_TRUE;
        out[j] = (cl_uint *)clEnqueueMapBuffer(
            tinfo->tQueue, tinfo->outBuf[j], blocking, CL_MAP_READ, 0,
            buffer_size, 0, NULL, NULL, &error);
        if (error || NULL == out[j])
        {
            vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
                       error);
            goto exit;
        }
    }

    // Verify data
    t = (cl_uint *)r;
    for (size_t j = 0; j < buffer_elements; j++)
    {
        for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
        {
            cl_uint *q = out[k];

            // If we aren't getting the correctly rounded result
            if (t[j] != q[j])
            {
                float test = ((float *)q)[j];
                double correct = func.f_fi(s[j], s2[j]);
                float err = Ulp_Error(test, correct);
                int fail = !(fabsf(err) <= ulps);

                if (fail && ftz)
                {
                    // retry per section 6.5.3.2
                    if (IsFloatResultSubnormal(correct, ulps))
                    {
                        fail = fail && (test != 0.0f);
                        if (!fail) err = 0.0f;
                    }

                    // retry per section 6.5.3.3
                    if (IsFloatSubnormal(s[j]))
                    {
                        double correct2, correct3;
                        float err2, err3;
                        correct2 = func.f_fi(0.0, s2[j]);
                        correct3 = func.f_fi(-0.0, s2[j]);
                        err2 = Ulp_Error(test, correct2);
                        err3 = Ulp_Error(test, correct3);
                        fail = fail
                            && ((!(fabsf(err2) <= ulps))
                                && (!(fabsf(err3) <= ulps)));
                        if (fabsf(err2) < fabsf(err)) err = err2;
                        if (fabsf(err3) < fabsf(err)) err = err3;

                        // retry per section 6.5.3.4
                        if (IsFloatResultSubnormal(correct2, ulps)
                            || IsFloatResultSubnormal(correct3, ulps))
                        {
                            fail = fail && (test != 0.0f);
                            if (!fail) err = 0.0f;
                        }
                    }
                }

                if (fabsf(err) > tinfo->maxError)
                {
                    tinfo->maxError = fabsf(err);
                    tinfo->maxErrorValue = s[j];
                    tinfo->maxErrorValue2 = s2[j];
                }
                if (fail)
                {
                    vlog_error(
                        "\nERROR: %s%s: %f ulp error at {%a (0x%8.8x), %d}: "
                        "*%a (0x%8.8x) vs. %a (0x%8.8x) at index: %d\n",
                        name, sizeNames[k], err, s[j], ((uint32_t *)s)[j],
                        s2[j], r[j], ((uint32_t *)r)[j], test,
                        ((cl_uint *)&test)[0], j);
                    error = -1;
                    goto exit;
                }
            }
        }
    }

    for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
    {
        if ((error = clEnqueueUnmapMemObject(tinfo->tQueue, tinfo->outBuf[j],
                                             out[j], 0, NULL, NULL)))
        {
            vlog_error("Error: clEnqueueUnmapMemObject %d failed 2! err: %d\n",
                       j, error);
            return error;
        }
    }

    if ((error = clFlush(tinfo->tQueue))) vlog("clFlush 3 failed\n");


    if (0 == (base & 0x0fffffff))
    {
        if (gVerboseBruteForce)
        {
            vlog("base:%14u step:%10u scale:%10zu buf_elements:%10u ulps:%5.3f "
                 "ThreadCount:%2u\n",
                 base, job->step, job->scale, buffer_elements, job->ulps,
                 job->threadCount);
        }
        else
        {
            vlog(".");
        }
        fflush(stdout);
    }

exit:
    return error;
}