aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/images/samplerlessReads/test_iterations.cpp
blob: 55eaaf48c8240c962c4adc9f595770754b56d282 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "../testBase.h"
#include <float.h>

#if defined( __APPLE__ )
    #include <signal.h>
    #include <sys/signal.h>
    #include <setjmp.h>
#endif

extern bool gTestReadWrite;

const char *read2DKernelSourcePattern =
"__kernel void sample_kernel( read_only %s input, sampler_t sampler, __global int *results )\n"
"{\n"
"   int tidX = get_global_id(0), tidY = get_global_id(1);\n"
"   int offset = tidY*get_image_width(input) + tidX;\n"
"   int2 coords = (int2)(tidX, tidY);\n"
"   %s clr = read_image%s( input, coords );\n"
"   int4 test = (clr != read_image%s( input, sampler, coords ));\n"
"   if ( test.x || test.y || test.z || test.w )\n"
"      results[offset] = -1;\n"
"   else\n"
"      results[offset] = 0;\n"
"}";


const char *read_write2DKernelSourcePattern =
"__kernel void sample_kernel( read_only %s read_only_image, read_write %s read_write_image, sampler_t sampler, __global int *results )\n"
"{\n"
"   int tidX = get_global_id(0), tidY = get_global_id(1);\n"
"   int offset = tidY*get_image_width(read_only_image) + tidX;\n"
"   int2 coords = (int2)(tidX, tidY);\n"
"   %s clr = read_image%s( read_only_image, sampler, coords );\n"
"   write_image%s(read_write_image, coords, clr);\n"
"   atomic_work_item_fence(CLK_IMAGE_MEM_FENCE, memory_order_acq_rel, memory_scope_work_item);\n"
"   int4 test = (clr != read_image%s( read_write_image, coords ));\n"
"   if ( test.x || test.y || test.z || test.w )\n"
"      results[offset] = -1;\n"
"   else\n"
"      results[offset] = 0;\n"
"}";
int test_read_image_2D( cl_context context, cl_command_queue queue, cl_kernel kernel,
                        image_descriptor *imageInfo, image_sampler_data *imageSampler,
                        ExplicitType outputType, MTdata d )
{
    int error;
    size_t threads[2];
    cl_sampler actualSampler;

    // generate_random_image_data allocates with malloc, so we use a MallocDataBuffer here
    BufferOwningPtr<char> imageValues;
    generate_random_image_data( imageInfo, imageValues, d );

    if ( gDebugTrace )
        log_info( " - Creating image %d by %d...\n", (int)imageInfo->width, (int)imageInfo->height );

    // Construct testing sources
    cl_mem read_only_image, read_write_image;
    cl_image_desc image_desc;

    memset(&image_desc, 0x0, sizeof(cl_image_desc));
    image_desc.image_type = CL_MEM_OBJECT_IMAGE2D;
    image_desc.image_width = imageInfo->width;
    image_desc.image_height = imageInfo->height;
    image_desc.image_row_pitch = ( gEnablePitch ? imageInfo->rowPitch : 0 );
    image_desc.num_mip_levels = 0;
    read_only_image = clCreateImage( context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, imageInfo->format,
                                       &image_desc, imageValues, &error );
    if ( error != CL_SUCCESS )
    {
        log_error( "ERROR: Unable to create 2D read_only image of size %d x %d pitch %d (%s)\n", (int)imageInfo->width, (int)imageInfo->height, (int)imageInfo->rowPitch, IGetErrorString( error ) );
        return error;
    }

    if(gTestReadWrite)
    {
        read_write_image = clCreateImage(context,
                                         CL_MEM_READ_WRITE,
                                         imageInfo->format,
                                         &image_desc,
                                         NULL,
                                         &error );
        if ( error != CL_SUCCESS )
        {
            log_error( "ERROR: Unable to create 2D read_write image of size %d x %d pitch %d (%s)\n",
                        (int)imageInfo->width,
                        (int)imageInfo->height,
                        (int)imageInfo->rowPitch,
                        IGetErrorString( error ) );
            return error;
        }
    }

    if ( gDebugTrace )
        log_info( " - Creating kernel arguments...\n" );

    // Create sampler to use
    actualSampler = clCreateSampler( context, CL_FALSE, CL_ADDRESS_NONE, CL_FILTER_NEAREST, &error );
    test_error( error, "Unable to create image sampler" );

    // Create results buffer
    cl_mem results = clCreateBuffer( context, 0, imageInfo->width * imageInfo->height * sizeof(cl_int), NULL, &error);
    test_error( error, "Unable to create results buffer" );

    size_t resultValuesSize = imageInfo->width * imageInfo->height * sizeof(cl_int);
    BufferOwningPtr<int> resultValues(malloc( resultValuesSize ));
    memset( resultValues, 0xff, resultValuesSize );
    clEnqueueWriteBuffer( queue, results, CL_TRUE, 0, resultValuesSize, resultValues, 0, NULL, NULL );

    // Set arguments
    int idx = 0;
    error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &read_only_image );
    test_error( error, "Unable to set kernel arguments" );
    if(gTestReadWrite)
    {
        error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &read_write_image );
        test_error( error, "Unable to set kernel arguments" );
    }
    error = clSetKernelArg( kernel, idx++, sizeof( cl_sampler ), &actualSampler );
    test_error( error, "Unable to set kernel arguments" );
    error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &results );
    test_error( error, "Unable to set kernel arguments" );

    // Run the kernel
    threads[0] = (size_t)imageInfo->width;
    threads[1] = (size_t)imageInfo->height;
    error = clEnqueueNDRangeKernel( queue, kernel, 2, NULL, threads, NULL, 0, NULL, NULL );
    test_error( error, "Unable to run kernel" );

    if ( gDebugTrace )
        log_info( "    reading results, %ld kbytes\n", (unsigned long)( imageInfo->width * imageInfo->height * sizeof(cl_int) / 1024 ) );

    error = clEnqueueReadBuffer( queue, results, CL_TRUE, 0, resultValuesSize, resultValues, 0, NULL, NULL );
    test_error( error, "Unable to read results from kernel" );
    if ( gDebugTrace )
        log_info( "    results read\n" );

    // Check for non-zero comps
    bool allZeroes = true;
    for ( size_t ic = 0; ic < imageInfo->width * imageInfo->height; ++ic )
    {
        if ( resultValues[ic] ) {
            allZeroes = false;
            break;
        }
    }
    if ( !allZeroes )
    {
        log_error( " Sampler-less reads differ from reads with sampler.\n" );
        return -1;
    }

    clReleaseSampler(actualSampler);
    clReleaseMemObject(results);
    clReleaseMemObject(read_only_image);
    if(gTestReadWrite)
    {
        clReleaseMemObject(read_write_image);
    }

    return 0;
}

int test_read_image_set_2D(cl_device_id device, cl_context context,
                           cl_command_queue queue,
                           const cl_image_format *format,
                           image_sampler_data *imageSampler,
                           ExplicitType outputType)
{
    char programSrc[10240];
    const char *ptr;
    const char *readFormat;
    const char *dataType;
    clProgramWrapper program;
    clKernelWrapper kernel;
    RandomSeed seed( gRandomSeed );
    int error;

    // Get our operating params
    size_t maxWidth, maxHeight;
    cl_ulong maxAllocSize, memSize;
    image_descriptor imageInfo = { 0 };
    size_t pixelSize;

    if (gTestReadWrite && checkForReadWriteImageSupport(device))
    {
        return TEST_SKIPPED_ITSELF;
    }

    imageInfo.format = format;
    imageInfo.depth = imageInfo.arraySize = imageInfo.slicePitch = 0;
    imageInfo.type = CL_MEM_OBJECT_IMAGE2D;
    pixelSize = get_pixel_size( imageInfo.format );

    error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL );
    error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL );
    error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
    error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
    test_error( error, "Unable to get max image 2D size from device" );

    if (memSize > (cl_ulong)SIZE_MAX) {
      memSize = (cl_ulong)SIZE_MAX;
    }

    // Determine types
    if ( outputType == kInt )
    {
        readFormat = "i";
        dataType = "int4";
    }
    else if ( outputType == kUInt )
    {
        readFormat = "ui";
        dataType = "uint4";
    }
    else // kFloat
    {
        readFormat = "f";
        dataType = (format->image_channel_order == CL_DEPTH) ? "float" : "float4";
    }

    if(gTestReadWrite)
    {
        sprintf(programSrc,
                read_write2DKernelSourcePattern,
                (format->image_channel_order == CL_DEPTH) ? "image2d_depth_t" : "image2d_t",
                (format->image_channel_order == CL_DEPTH) ? "image2d_depth_t" : "image2d_t",
                dataType,
                readFormat,
                readFormat,
                readFormat);
    }
    else
    {
        sprintf(programSrc,
                read2DKernelSourcePattern,
                (format->image_channel_order == CL_DEPTH) ? "image2d_depth_t" : "image2d_t",
                dataType,
                readFormat,
                readFormat );
    }

    ptr = programSrc;
    error = create_single_kernel_helper(context, &program, &kernel, 1, &ptr,
                                        "sample_kernel");
    test_error( error, "Unable to create testing kernel" );

    if ( gTestSmallImages )
    {
        for ( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ )
        {
            imageInfo.rowPitch = imageInfo.width * pixelSize;
            for ( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ )
            {
                if ( gDebugTrace )
                    log_info( "   at size %d,%d\n", (int)imageInfo.width, (int)imageInfo.height );

                int retCode = test_read_image_2D( context, queue, kernel, &imageInfo, imageSampler, outputType, seed );
                if ( retCode )
                    return retCode;
            }
        }
    }
    else if ( gTestMaxImages )
    {
        // Try a specific set of maximum sizes
        size_t numbeOfSizes;
        size_t sizes[100][3];

        get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, 1, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE2D, imageInfo.format);

        for ( size_t idx = 0; idx < numbeOfSizes; idx++ )
        {
            imageInfo.width = sizes[ idx ][ 0 ];
            imageInfo.height = sizes[ idx ][ 1 ];
            imageInfo.rowPitch = imageInfo.width * pixelSize;
            log_info("Testing %d x %d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ]);
            if ( gDebugTrace )
                log_info( "   at max size %d,%d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ] );
            int retCode = test_read_image_2D( context, queue, kernel, &imageInfo, imageSampler, outputType, seed );
            if ( retCode )
                return retCode;
        }
    }
    else
    {
        for ( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
        {
            cl_ulong size;
            // Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
            // image, the result array, plus offset arrays, will fit in the global ram space
            do
            {
                imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed );
                imageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed );

                imageInfo.rowPitch = imageInfo.width * pixelSize;
                if ( gEnablePitch )
                {
                    size_t extraWidth = (int)random_log_in_range( 0, 64, seed );
                    imageInfo.rowPitch += extraWidth * pixelSize;
                }

                size = (size_t)imageInfo.rowPitch * (size_t)imageInfo.height * 4;
            } while (  size > maxAllocSize || ( size * 3 ) > memSize );

            if ( gDebugTrace )
                log_info( "   at size %d,%d (row pitch %d) out of %d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.rowPitch, (int)maxWidth, (int)maxHeight );
            int retCode = test_read_image_2D( context, queue, kernel, &imageInfo, imageSampler, outputType, seed );
            if ( retCode )
                return retCode;
        }
    }

    return 0;
}