aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/images/kernel_image_methods/test_2D.cpp
blob: b0d4a7086dd0ec37a6bff969255df0f21ca83c86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "../testBase.h"


struct image_kernel_data
{
    cl_int width;
    cl_int height;
    cl_int depth;
    cl_int widthDim;
    cl_int heightDim;
    cl_int depthDim;
    cl_int channelType;
    cl_int channelOrder;
    cl_int expectedChannelType;
    cl_int expectedChannelOrder;
};

static const char *methodTestKernelPattern =
    "typedef struct {\n"
    "    int width;\n"
    "    int height;\n"
    "    int depth;\n"
    "    int widthDim;\n"
    "    int heightDim;\n"
    "    int depthDim;\n"
    "    int channelType;\n"
    "    int channelOrder;\n"
    "    int expectedChannelType;\n"
    "    int expectedChannelOrder;\n"
    " } image_kernel_data;\n"
    " %s\n"
    "__kernel void sample_kernel( %s image%dd%s_t input, __global "
    "image_kernel_data *outData )\n"
    "{\n"
    "   outData->width = get_image_width( input );\n"
    "   outData->height = get_image_height( input );\n"
    "%s\n"
    "   int%d dim = get_image_dim( input );\n"
    "   outData->widthDim = dim.x;\n"
    "   outData->heightDim = dim.y;\n"
    "%s\n"
    "   outData->channelType = get_image_channel_data_type( input );\n"
    "   outData->channelOrder = get_image_channel_order( input );\n"
    "\n"
    "   outData->expectedChannelType = %s;\n"
    "   outData->expectedChannelOrder = %s;\n"
    "}";

static const char *depthKernelLine = "   outData->depth = get_image_depth( input );\n";
static const char *depthDimKernelLine = "   outData->depthDim = dim.z;\n";

int test_get_image_info_single(cl_context context, cl_command_queue queue,
                               image_descriptor *imageInfo, MTdata d,
                               cl_mem_flags flags)
{
    int error = 0;

    clProgramWrapper program;
    clKernelWrapper kernel;
    clMemWrapper image, outDataBuffer;
    char programSrc[ 10240 ];

    image_kernel_data    outKernelData;

    // Generate some data to test against
    BufferOwningPtr<char> imageValues;
    generate_random_image_data( imageInfo, imageValues, d );

    // Construct testing source
    if( gDebugTrace )
        log_info( " - Creating image %d by %d...\n", (int)imageInfo->width, (int)imageInfo->height );

    if( imageInfo->depth != 0 )
        image = create_image_3d(context, flags, imageInfo->format,
                                imageInfo->width, imageInfo->height,
                                imageInfo->depth, 0, 0, NULL, &error);
    else
        image =
            create_image_2d(context, flags, imageInfo->format, imageInfo->width,
                            imageInfo->height, 0, NULL, &error);
    if( image == NULL )
    {
        log_error( "ERROR: Unable to create image of size %d x %d x %d (%s)", (int)imageInfo->width, (int)imageInfo->height, (int)imageInfo->depth, IGetErrorString( error ) );
        return -1;
    }

    char channelTypeConstantString[256] = {0};
    char channelOrderConstantString[256] = {0};

    const char* channelTypeName = GetChannelTypeName( imageInfo->format->image_channel_data_type );
    const char* channelOrderName = GetChannelOrderName( imageInfo->format->image_channel_order );
    const char *image_access_qualifier =
        (flags == CL_MEM_READ_ONLY) ? "read_only" : "write_only";
    const char *cl_khr_3d_image_writes_enabler = "";
    if ((flags != CL_MEM_READ_ONLY) && (imageInfo->depth != 0))
        cl_khr_3d_image_writes_enabler =
            "#pragma OPENCL EXTENSION cl_khr_3d_image_writes : enable";

    if(channelTypeName && strlen(channelTypeName))
        sprintf(channelTypeConstantString, "CLK_%s", &channelTypeName[3]);  // replace CL_* with CLK_*

    if(channelOrderName && strlen(channelOrderName))
        sprintf(channelOrderConstantString, "CLK_%s", &channelOrderName[3]); // replace CL_* with CLK_*

    // Create a program to run against
    sprintf(programSrc, methodTestKernelPattern, cl_khr_3d_image_writes_enabler,
            image_access_qualifier, (imageInfo->depth != 0) ? 3 : 2,
            (imageInfo->format->image_channel_order == CL_DEPTH) ? "_depth"
                                                                 : "",
            (imageInfo->depth != 0) ? depthKernelLine : "",
            (imageInfo->depth != 0) ? 4 : 2,
            (imageInfo->depth != 0) ? depthDimKernelLine : "",
            channelTypeConstantString, channelOrderConstantString);

    //log_info("-----------------------------------\n%s\n", programSrc);
    error = clFinish(queue);
    if (error)
        print_error(error, "clFinish failed.\n");
    const char *ptr = programSrc;
    error = create_single_kernel_helper(context, &program, &kernel, 1, &ptr,
                                        "sample_kernel");
    test_error( error, "Unable to create kernel to test against" );

    // Create an output buffer
    outDataBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE,
                                   sizeof(outKernelData), NULL, &error);
    test_error( error, "Unable to create output buffer" );

    // Set up arguments and run
    error = clSetKernelArg( kernel, 0, sizeof( image ), &image );
    test_error( error, "Unable to set kernel argument" );
    error = clSetKernelArg( kernel, 1, sizeof( outDataBuffer ), &outDataBuffer );
    test_error( error, "Unable to set kernel argument" );

    size_t threads[1] = { 1 }, localThreads[1] = { 1 };

    error = clEnqueueNDRangeKernel( queue, kernel, 1, NULL, threads, localThreads, 0, NULL, NULL );
    test_error( error, "Unable to run kernel" );

    error = clEnqueueReadBuffer( queue, outDataBuffer, CL_TRUE, 0, sizeof( outKernelData ), &outKernelData, 0, NULL, NULL );
    test_error( error, "Unable to read data buffer" );


    // Verify the results now
    if( outKernelData.width != (cl_int)imageInfo->width )
    {
        log_error( "ERROR: Returned width did not validate (expected %d, got %d)\n", (int)imageInfo->width, (int)outKernelData.width );
        error = -1;
    }
    if( outKernelData.height != (cl_int)imageInfo->height )
    {
        log_error( "ERROR: Returned height did not validate (expected %d, got %d)\n", (int)imageInfo->height, (int)outKernelData.height );
        error = -1;
    }
    if( ( imageInfo->depth != 0 ) && ( outKernelData.depth != (cl_int)imageInfo->depth ) )
    {
        log_error( "ERROR: Returned depth did not validate (expected %d, got %d)\n", (int)imageInfo->depth, (int)outKernelData.depth );
        error = -1;
    }
    if( outKernelData.widthDim != (cl_int)imageInfo->width )
    {
        log_error( "ERROR: Returned width from get_image_dim did not validate (expected %d, got %d)\n", (int)imageInfo->width, (int)outKernelData.widthDim );
        error = -1;
    }
    if( outKernelData.heightDim != (cl_int)imageInfo->height )
    {
        log_error( "ERROR: Returned height from get_image_dim did not validate (expected %d, got %d)\n", (int)imageInfo->height, (int)outKernelData.heightDim );
        error = -1;
    }
    if( ( imageInfo->depth != 0 ) && ( outKernelData.depthDim != (cl_int)imageInfo->depth ) )
    {
        log_error( "ERROR: Returned depth from get_image_dim did not validate (expected %d, got %d)\n", (int)imageInfo->depth, (int)outKernelData.depthDim );
        error = -1;
    }
    if( outKernelData.channelType != (cl_int)outKernelData.expectedChannelType )
    {
        log_error( "ERROR: Returned channel type did not validate (expected %s (%d), got %d)\n", GetChannelTypeName( imageInfo->format->image_channel_data_type ),
                                                                                              (int)outKernelData.expectedChannelType, (int)outKernelData.channelType );
        error = -1;
    }
    if( outKernelData.channelOrder != (cl_int)outKernelData.expectedChannelOrder )
    {
        log_error( "ERROR: Returned channel order did not validate (expected %s (%d), got %d)\n", GetChannelOrderName( imageInfo->format->image_channel_order ),
                                                                                              (int)outKernelData.expectedChannelOrder, (int)outKernelData.channelOrder );
        error = -1;
    }

     if( clFinish(queue) != CL_SUCCESS )
     {
         log_error( "ERROR: CL Finished failed in %s \n", __FUNCTION__);
         error = -1;
     }

    return error;
}

int test_get_image_info_2D(cl_device_id device, cl_context context,
                           cl_command_queue queue, cl_image_format *format,
                           cl_mem_flags flags)
{
    size_t maxWidth, maxHeight;
    cl_ulong maxAllocSize, memSize;
    image_descriptor imageInfo = { 0 };
    RandomSeed seed( gRandomSeed );
    size_t pixelSize;

    imageInfo.type = CL_MEM_OBJECT_IMAGE2D;
    imageInfo.format = format;
    imageInfo.depth = imageInfo.slicePitch = 0;
    pixelSize = get_pixel_size( imageInfo.format );

    int error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL );
    error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL );
    error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
    error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
    test_error( error, "Unable to get max image 2D size from device" );

  if (memSize > (cl_ulong)SIZE_MAX) {
    memSize = (cl_ulong)SIZE_MAX;
  }

    if( gTestSmallImages )
    {
        for( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ )
        {
            imageInfo.rowPitch = imageInfo.width * pixelSize;
            for( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ )
            {
                if( gDebugTrace )
                    log_info( "   at size %d,%d\n", (int)imageInfo.width, (int)imageInfo.height );

                int ret = test_get_image_info_single(context, queue, &imageInfo,
                                                     seed, flags);
                if( ret )
                    return -1;
            }
        }
    }
    else if( gTestMaxImages )
    {
        // Try a specific set of maximum sizes
        size_t numbeOfSizes;
        size_t sizes[100][3];

        get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, 1, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE2D, imageInfo.format);

        for( size_t idx = 0; idx < numbeOfSizes; idx++ )
        {
            imageInfo.width = sizes[ idx ][ 0 ];
            imageInfo.height = sizes[ idx ][ 1 ];
            imageInfo.rowPitch = imageInfo.width * pixelSize;

            log_info( "Testing %d x %d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ]);
            if( gDebugTrace )
                log_info( "   at max size %d,%d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ] );
            if (test_get_image_info_single(context, queue, &imageInfo, seed,
                                           flags))
                return -1;
        }
    }
    else
    {
        for( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
        {
            cl_ulong size;
            // Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
            // image, the result array, plus offset arrays, will fit in the global ram space
            do
            {
                imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed );
                imageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed );

                imageInfo.rowPitch = imageInfo.width * pixelSize;
                size_t extraWidth = (int)random_log_in_range( 0, 64, seed );
                imageInfo.rowPitch += extraWidth;

                do {
                    extraWidth++;
                    imageInfo.rowPitch += extraWidth;
                } while ((imageInfo.rowPitch % pixelSize) != 0);

                size = (cl_ulong)imageInfo.rowPitch * (cl_ulong)imageInfo.height * 4;
            } while(  size > maxAllocSize || ( size * 3 ) > memSize );

            if( gDebugTrace )
                log_info( "   at size %d,%d (row pitch %d) out of %d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.rowPitch, (int)maxWidth, (int)maxHeight );
            int ret = test_get_image_info_single(context, queue, &imageInfo,
                                                 seed, flags);
            if( ret )
                return -1;
        }
    }

    return 0;
}